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Falko Bause Informatik IV, TU Dortmund, D-44221 Dortmund
Email: falko.bause@udo.edu

Abstract—This paper defines Structured Markovian Ar-  of manageable size, but with the drawback of covering
rival Processes (SMAPs). An SMAP consists of severalonly restricted forms of autocorrelations. Recently [21]
blocks each being represented by a random variable presented a minimal representation of MAPs based on
specifying the duration of staying in that block. Leaving a  {he joint moments of the interarrival time process and
block indicates an arrival event of the SMAP. The routing g0 that properly chosest parameters are sufficient
between blocks is governed by a stochastic matriQ. It . . o
is shown that the joint moments of the SMAP can be to q§term|ne a MAP withn states. Evgn more I _'S
directly determined from the moments of the block random  Sufficient to consider moments of the interarrival time
variables and routing matrix Q, if Q is doubly stochastic. and joint moments of consecutive(!) interarrival times to
The characteristics of the SMAP can be computed very ef- capture also the long range behaviour and to characterise
ficiently if Q is in addition circulant. Furthermore we show a MAP.
that for given block random variables the determination In spite of such results there are still open problems
of a routing matrix Q and thus the fitting of the SMAP  concerning the characterisation of MAPs. One problem
essentially results in solving a set of linear equations. concerns a canonical representation of MAPs and [2]
suggests to look for specific structures of MAPs for a
better understanding. In this paper we investigate such a
specific structure. In contrast to the recommendation of

Since the seminal work of Neuts [19] Markoviar2] we do not concentrate on the level of the state space,
Arrival Processes (MAPs) are commonly used for the deut try to consider MAPs from a more abstract point
scription of complex arrival processes in Markov modelsf view: A MAP consists of several blocks represented
Especially their use in analytical models like queueingy random variables specifying the duration of internal
network models has been investigated intensely [8], [1Dehaviour. Leaving a block indicates an arrival event and
[12], [15], [23]. It is a considerable problem to findthe routing between blocks is described by a routing
the parameters of a MAP so that the characteristiogatrix Q. The main result of this paper expresses that
of an arrival process are captured accurately. Normatlye joint moments of the MAP can be determined from
those characteristics are given as a sample (measurethermoments of the block random variables and routing
from a simulation trace) or as specific statistical figurematrix Q, if Q is doubly stochastic. A special class of
like e.g. the joint moments of the interarrival timesdoubly stochastic routing matrices are circulant matrices
Corresponding to these two forms of descriptions of and we additionally show that for given block distribu-
arrival process there are two major classes of fittingpns the fitting of MAPs essentially results in solving a
methods [16]: Fitting based on the sample data asdt of linear equations for determining a circulant routing
fitting based on information extracted from the sampleatrix.

An example of the first class of fitting methods is The outline of the paper is as follows. In Sect. Il we
the expectation-maximisation method (e.g. [5], [22]). Aresent some basic definitions before we give the main
drawback of this fitting method is that its computationaksult in Sect. Ill. Sect. IV considers circulant routing
complexity depends on the size of the sample data. imatrices.

contrast, the second class of fitting methods offers the

possibility to examine large datasets, since the calcula- Il. BASIC DEFINITIONS

tion of derived characteristics (e.g. mean, variance etc.)MAPs are usually defined by two square matrices
is less computationally intensive. In this context severBl, and D; of the same order, such that the sum
papers deal with the fitting of small MAPs usualyD = Do + D; is the generator of an irreducible
consisting of a few states (e.g. [9], [10]), so that th®larkov chain. Elements of matrifD; describe tran-
state space of the overall performance model is s#litions between states being associated with an arrival
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and off-diagonal elements of matri®, are associated
with internal transitions of the MAP. The steady state blockj ____
probability vectorr is given by 7D = 0,717 = 1
wherel = (1,...,1) is a vector of ones. In this paper
we will denote vectorsv as row vectors and-” and
CT denote the transpose of vecter and matrix C,
resp. We will use superscripts for matrices and vectors
as follows: for a matrixC, C’ is the i-th power of C
and for a parameterised vector v denotes the vector
for parameteri andv*(5) is the j-th component of’.
The discrete time process embedded at arrival instants
is given by the state transition probability matdXx =
(—-Dp)~!'D; and the corresponding steady state proba-
bility vector « is given byaP = o, al” = 1.

In steady state, the distribution of the interarrival titke
is given by P[X < t] = 1 — aePe!17. The moments of Fig. 1. Structured MAP
X and the joint moments of the interarrival time process

are given by [15], [21]:

o k-th moment: « m(i) € N denoting the number of Erlang-branches.
e 7(i,b) € N is the number of states of branéh

E[X"] = kla(=Dg) *1" D . pG,j) € [0,1,5 € {1,...,m()} denoting

« joint moments of the) — ag < a; < ... < ap-th th%(gropapility of selecting branclhi. Note that

interarrival times:E[X° X2 ... X*] = zq‘=} p(i,j) = 1. _
! " e u(i,j) € RT is the parameter of the exponential

k ok 4 distributions of brancly.
[100 a=Do) ™™ ] {P(aj_ajfl)(_DO)_” 1" (2 The moments of the hyper-Erlang distribution of block
j=0 j=1 i are given by [22]

[21] shows that the joint moments uniquely determine

m(i)

a MAP and that the corresponding matrix representations K . k! k+r(i,b) -1
(Dg,Dy) are all similar. BN = ;p(z’b)ﬂ(z‘,b)’f r(i,b) — 1 @)
. STRUCTURED MAP an_d since the nl_meer 01_‘ states is .finite all moments do
exist. For a concise notation we defive:= {1,..., N},

The main idea of this paper is to impose the following ¢ (;y .— {1, ... m(i)}, R(i,b) := {L1,...,r(i,b)}.
structure on the MAP. A structured MAP is defined The state of the MAP is given b, b, s),i € N

here by a finite number of blocks +:NX1> N b e M(i), s € R(i, b) wherei denotes the block number,
and a routing matrixQ = (q(i, 7)) € Ry - Each 4 is the current branch of the hyper-Erlang distribution
block i is described by a random variabi¢ specifying gnd s the corresponding current phase.

the duration of staying in that block. Leaving bloek  pefinition 1 (SMAP):A structured MAP (SMAP) is
indicates an arrival event and the process enters blogkap given by(N, B,Y, Q) whereN € N denotes the

J with probability ¢(¢, j). The situation is similar to a y;mper of blocksB with | B |= N is a set of blocks and
closed queueing network where a single customer movps_ {Y1,...,Yy} is a set of random variables withi

around and leaving a station issues an arrival event. HBing the random variable for bloak Q = (q(3,5)) €
this paper we assume that the have a hyper-Erlang p+N>N g ap jrreducible stochastic matrix whose entries
dlstrlbutlon in order to S|_mp_I|fy some notatlons: T_h%(z‘,j) specify the probability of entering block after
choice of hyper-Erlang distributions is no reSt”Ct'onnaving left blocki.
since hype_r-ErIgng_ dis_tributiong can approximate general - J4o- 1o simplify notation, we use two auxiliary
non-negative distributions arbitrarily closely [6], [18]functions. Define for arbitrary ordered sefsfunction
[22] . .S x S {0,1} by

Fig. 1 depicts the general structure of the MAP. Th%
parameters of the hyper-Erlang distribution of block 1 ifi<y

iie{l,...,N} are 7(1"7)::{ 0 otherwise



and define for arbitrary setS the discrete delta function As we will see assumin@ to be doubly stochastic

d:S%xS—{0,1} as simplifies the calculation of the joint moments of the
1 i SMAP. Furthermore we can determine the steady state
6(i,7):= { 0 othe_rviise distribution of the Markov chain directly.
Theorem 1:Let (N, B,Y,Q) be an SMAP with dou-
With these definitions the matric&3y, D; of an SMAP ply stochastic matrixQ, then the vectorr satisfying
can be written as 7D =0,717 =1 is given by
Do((i,0,5), (j;c;t)) = 0((i,b), (4, c))u(i, b) _ p(i,b
[6(s,t — 1)y(s, (i, b)) — (s, )] 4 (i, b, s) =GM((Z. b; (8)
D1((i,0,5), (j;c;t)) = 6(t,1)d(s, 7(i,b)) , , , )
q( j)p(])c)p](z’b) VZEN,I)EM(Z),S ER(Z, ), with
As expectedD := Dy + D; is the generator of a pli b)
Markov chain, since = z/\:szz i, b)2 z,b 9)
N m() r(ic) N
Z > > Do((i,b,s), (j,e 1) + D1((i,b, 5), (j.c,t)) G is a normalisation constant ensuribg (i, b, s) = 1.
j=1 =1 t=1 Note that} = Y-, E[Y;] whereE[Y]] is the first moment
N m(j) r(e) (mean) of the hyper-Erlang distribution of blo¢k
= > > { ) (i, b) Proof: of Th. 1:
j=1 c=1 t=1 Eq. (5) obviously holds, since (8) implies
[0(s,t — 1)y(s,7(i,b)) — (s, )] (i b, s) = m(i,b,t),Vs, t € R(i,b).
. . Applying (8) to (6) gives
0(1,1)3(s, (i, B)a(i, ol )i b)) Ppiying (8) to (6) giv
r(i,b) Gp(l,b) b G N k) p ) L b
= 3 { Bt -t —dsolutn}  Cuap @Y T F 2 2 g etk dne)
t=1
N m(j) N m(k)
+5(s,r (1,00, 0) S 3 alin j)p ) = Gp(i,b) Y a(k,i) > k. ]
=1 =1 k=1 j=1
r(i,b) = Gp(l>b)
= { S, t_l (S,T(i,b)) _5(37t)] M(Zab)} ]
t=1

+6(s, 7, b)uli, b) = 0 If Q is doubly stochastic, we will call an SMAP
AT ’ a doubly stochastic SMAR The next theorem shows
The global balance equation§Dg + D;) = 0 are that the joint moments of doubly stochastic SMAPs can
given by the following set of equations be directly calculated from the moments of the block
Vie N,be M(i),s € R(i,b) : distributions.
Define the vectoE* := (E[Y}], E[Y}], ..., E[Y{])
where E[Y}] is the k-th moment of random variablg;.

m(i,0,5) = m(ib,s—1) if s>1 () For a vectorv € RV let Diag(v) = (d(i,7)) € RNV
. . N_m(k) be the diagonal matrix witll(i, j) = 6(i, 7)v(i).
n(i by s)u(i,b) = > Y wlk.gr(k, §)uk, 5) Theorem 2:Let (N, B,Y, Q) be an SMAP with dou-

k=1 j=1 bly stochastic matrixQ, then the following holds for
q(k,i)p(i,b) if s=1(6) the joint moments of th® = ag < a1 < ... < aj-th

In the following we will assume that the routing matriXnterarrival times:
Q is doubly stochastic [13]. A doubly stochastic matrix , 1 4
is also called bistochastic. E[Xy ... X} = NEZO H [Q™ Diag(E")] 17 (10)
Definition 2: A matrix Q € R{{NXN is doubly stochas- j=1
tic iff with m; = aj —aj—1,7 = 2,...,k, m; := a; and 1
N N being here anV-dimensional vector of ones.
Y ali,) =) alii)=1, VieN (7) Proof: We give an outline of the proof here. For

j=1 j=1 details please see the appendix.



The expressions on the right hand side of (2) can lhereY; is Erlang-2 distributed with parameterg1) =
calculated directly using 1,r(1,1) = 2,p(1,1) = 1,u(1,1) = X andYs is
R . hyper-exponentially distributed with parametet$2) =
( DO) ((Z>b7 3) (]76 t ( ))7(37t + 1) 2,7“(2, 1) _ 70(2’2) _ 1,]7(2, 1) - 1 - p(272) _

) k< :j;_s> paﬂ(li) = i, € {172} Since
. E+1
PH((i,b,s), (ye,t)) = O(t, p(G, QL (i, ) ) = ELY
1
= — j k! k!
olisbis) = wols Deli0) BYE) = pp+(l-p);
and showing that for a 2
" the following holds for the SMAP:
vie = [Tl [P(“f_“f”)(—Do)_"f] 17 i 1/ (k+1)! K k!
E[X* = = 4+ (1-p—=
et [X*] 5 |\ T +p#,f +( p)u’ﬁ
k
wi = [ [Q® ) Diag(m®)| 17 EIXX]] = ;(E'QEQ)+ELE(2)
j=1 1 il it (5 +1)!
we haveVi € \ : - §<<E+(1_p)ﬂ_§> by,
vi (i, b, s) = wi (i), Vb e M(i),s € R(i,b) j! it (e + 1)
+ p]_+(1_p)]_j ( >\z)
#1 2
which finally gives
[ig!] a(=Dg) vy, iEi"wk If Q is NOT doubly stochastic, Th. 2 and Cor. 1 need
N not hold. E.g. if we change matriQ from Ex. 1 to
[
It is worth noting that the expressions in (10) depend Q.= < % % >
on the number of blocks and not on the number of states L0
of the SMAP. then Eq. (11) still gives
1 1—0p
EX|=—-+—+
1X] A 2#1 22
Corollary 1: For an SMAP(N, B, Y, Q) with doubly but evaluating (1) using
stochastic matriXQ, the following holds: 11 9 9
\V’i,j,m S NO . 6 i 0 0
) 1 (_DO)_l = 0 6 1 O
E[X'] = —Ea7T (11) I
Jf 00 0 -+
BIXiX;) = EQE (12)

2 1 1
Proof: Eq. (11) can be directly verified by calculat- and a = <3 0 3P 3(1 ; )>

H 1] % T
ing E[X] = ila(-Do) 1", it also follows from (10), (where the first two states represent the Erlandjstri-
using the conventlorﬂ ... = L Eq. (12) follows bution) gives

from (10) fork = 1, smceDmg(Eﬂ)lT . A ] 4 1

Note that Eq. (11) expresses that thth moment of EX]=—+ A
X is given by the arithmetic mean of tii¢h moments of 3A - 3m - 3
the random variables of the blocks. Eq. (11) also showBowing that Eq. (11) does not hold in this example
that the moments of the interarrival time are independetbere Q is not doubly stochastic. The reason is that
of the routing matrixQ whereas Eq. (12) shows that thdor irreducible doubly stochastic routing matricé® =

joint moments are determined by matr@ for given 3,517 =1 holds if 3 = &1, thus giving the possibility
block moments. to establish a relation between the block moments and

Example 1:Let (N, B,Y, Q) be an SMAP with the moments of the whole MAP being independent of the
- - - - 0 1 routing matrixQ as expressed in Eq. (11). Concerning
N=2[Bl=2Y={M%hQ = < 1 O> MAP fitting Eqg. (11) is of special interest, since it




suggests to first fit the distributions of the blocks. Thignd corresponding eigenvalues

step might also include the choice of a proper value for N

N. Once the block distributions are identified Eq. (12) P = que—%im(k—l)/N
can be employed to determine the correlation structure 1

by selecting a suitable routing matrix. for m = 0,...,N — 1, where: is here the complex

unit and7 Ludolph’s number [7].Q can be expressed
IV. CIRCULANT SMAPS in the formQ = VI'V* whereV has the eigenvectors
v™ as columns an@ = Diag(v) is a diagonal matrix
As shown in the last section a doubly stochastigith the eigenvalues of) at the diagonalV* is the
routing matrix imposed on a block representation @onjugate transpose &f for which one can show here
a MAP gives us concise expressions for the MAP#at V is unitary (i.e.V* = V1), so thatV*V =1
characteristics in terms of the characteristics of thmlds givingQ! = VU?V*. Thus the powers o€ can
blocks. A natural question is thus how to construdte calculated very efficiently, because the eigenvectors
doubly stochastic matrices. v™ do only depend onV and the eigenvalues(™,
Birkhoff’'s theorem states that every doubly stochastighich are the elements of the diagonal matbixcan be
matrix is a convex combination of finitely many permuefficiently determined by applying fast Fourier transform
tation matrices [13]. Furthermore they form a semigrowggorithms.
under matrix multiplication. Doubly stochastic matrices In the following we will have a closer look on
have been investigated sufficiently, see e.g. [13], [L@MAPs with circulant routing matrices. @ is a doubly
Trivial examples of doubly stochastic matrices are  stochastic and circulant matrix, we will call an SMAP a
e Q= (q(i,j)) with q(i,j) :== %.Vi,j e N'and ~ circulant SMAP.
« Q = (¢4, 7)) with q(4,5) := 0(((i +1) mod N), As mentioned, [21]' shows that a (nonredgndant)
(j mod N)),¥i,j € N. This matrix describes anMAP can be characterised by the momeAtst”], i =

SMAP where the blocks are daisy-chained and aftér- - 22— 1 and the lagk joint momentsi[X X{], i, j =
leaving block N the process enters block Note 1r---:7—1 wheren is the number of states(!). Therefore
that Q¥ (i, j) = 6(((i + k) mod N),(j mod N)). it seems to be sufficient to consider the equations

Both examples are special cases of so-called circulant NE[X] = EaT (13)
matr_ices [4], [7] which have several nice properties .and NE[XSX{] _ EiQEjT (14)
provide an option to define doubly stochastic matrices
straightforward as follows. Surely we cannot expect to characterise the MAP with
Let ¢1,...,qy be the probabilities of a discrete probathese equations, since for givéiwe know the number
bility distribution, i.e.q; > 0 andziN_l ¢; = 1. Define a Of blocks, but not the number of states of the underlying
non-diagonal circulant matrix (i.eq < 1) by MAP. However, as mentioned before, Eqgs. (13) and (14)

suggest a similar approach as investigated in [14] to
Q1 g2+ qN-1 QN first fit the interarrival time distribution using Eq. (13)
qN g1 Q2 qN-1 and then to fit the correlation structure using Eq. (14).
. : : Especially the last step is straight-forward for circulant
Q:= LGN . .
_ . routing matrices:
q3 g g q2 Assume that a set of distributions and thus the corre-
42 93 - 4N q1 sponding momentE’ are given all satisfying Eq. (13)
and that a circulant routing matrQ = circ(q1,...,qn)

where each row results from a cyclic shift of the FOWas to be determined. If we define= (q1 gv) and
above it. By constructior is a doubly stochastic andc (i) = NE[Xin] E.q (14) can be re\;\/.rit;[e’;n )
irreducible(!) matrix. Since matrixQ is determined by ' 0L

the valuesyy, . . ., g it is common to use the short-hand c(i,j) = qU (E' @ B/)" (15)
notationcirc(qi, . ..,qy) for Q. Circulant matrices are .

. . . \‘ygth
special cases of Toeplitz matrices [7] and the powe

_ NxN?
of circulant matrices can be calculated very efficiently, U = (u(a,b)) € R )

since every circulant matrix) has eigenvectors u(a,b) = 5((b—1) div N,(b—a) mod N),
o L <1 o—2mim/N e_QMm(N_l)/N) a=1,...,N,b=1,...,N? and wherex denotes the
VN 7 L Kronecker product [3].



Example 2:Let (N,B,Y,Q) be the SMAP from resulting inq = (230, (23921 -31199.) as a feasible
Ex. 1 now with unspecified routing matrix) = solution.
cire(qi,1 — ¢1) and given joint moment(1,1). Since
N =2 we have
100 1 Certainly, although checking whether a circulant rout-
U= < 01 1 0 ) ing matrix exists and its determination is reduced here
to the well-known problem of solving a system of linear

and thus the equation fay = (1,1 —q1) is equations, MAP fitting in general is still a non-trivial
4 » | (1=p))2 problem also for circulant SMAPs. The reason is that
pei (E T ) — (e(1.1 possible solutions of the system of linear equations
q 4 (1_) (C( Y )) . . ..
I (% + Tf) depend on the chosen joint momen(s, j) and on the

_ selected distributions of the blocks. E.g., a trivial siolnt
For the following concrete values for the parameters gf Eq. (13) isE! = E[X?]1 which results in an SMAP
the random variables;: A = 1, 1 = 1/10, p e 120, where essentially each block distribution coincides with
p=1/3 and assuming(1,1) = 15 one getsy = (2,7) the distribution of the SMAP. Then

as a solution. L 1 . . 4 .
E[XX]] = NE[X’]E[XJ]lQlT = E[X'|E[X]
indicates (as expected) that the interarrival times are

If several joint moments(i, j) are given we can build independent irrespective of the choice@f

a system of linear equations for the unknown veegjor
by concatenating the column vectdi§E’ ® Ej)T. E.g., V. CONCLUSIONS

given the joint moments(i, j) and c(k,l), the system  ag we have seen, taking advantage of structure and
of linear equations is double stochasticity supports a different view on MAPSs,
q (U(Ei 2 Ej)T | U(EF El)T) — (c(i, ), e(k, 1) where one can abstract from the IeV(_eI Qf the state space.
Eq. (10)-(12) express the characteristics of a MAP on
with an additional equation expressing” = 1. the basis of the characteristics of structural entities.
Example 3:Let (N, B,),Q) be an SMAP with In essence an SMAP is a network of probability
N = 3,| B |=3,Y = {Y1,Ys,Y3} whereY,,Y, are distributions whose entire characterisation as a proba-

from Ex. 1 andY; is exponentially distributed with bility distribution can be simply expressed by Eq. (11)

parameterr, so that due to double stochasticity. Since Eq. (11) considers
k+1)! K Bkl the moments, feasible solutions must also imply the

EF — < R (- p) _k> existence of a solution to the Hamburger (resp. Stieltjes)

A K1 Ky T moment problem (cf. [1], [20]). Future research might be

With matrix directed towards finding a suitable family of distributions
10001000 1 which can be easily fitted on the basis of Eq. (11),
U=|lo0o10 001100 but still span a suitable vector space for satisfying
001 100010 Egs. (10) and (12). As shown in Sect. IV circulant

matrices are helpful when determining a suitable routing

the column vectors for building the set of lineéap, a4y since they are by construction doubly stochastic

equations are given by (Ef @ B/)" = and what is even more important irreducible. Once the
E{(1)E’(1) + E{(2)E’(2) + E{(3)E/(3) block distributions respectively their moments are given,
E'(1)E/(2) + E{(2)E/ (3) + E/(3)E’(1) a routing matrix can be determined by solving a system
E{(1)E’(3) + E{(2)E’(1) + E{(3)E/(2) of linear equations.

_ Returning to the starting point of this paper we got
If we assume the following _concrete values for the PAome insight into MAPs on an abstract level. An inter-
rameters of the rando(rjn varlablé’sdA =1, m =1/10, esting question for future research is whether circulant
p2 = 10, p= 1/;:’ andr = zfl"?m assume(L,1) = o ot jeast doubly stochastic SMAPs can (approximately)
15, ¢(1,2) = 220 the system of linear equations is represent any MAP, so that they can serve as a basis
% % 1 for a canonical representation. Obviously, SMAPs with
a 19 608 1 | Z (15,220,1) geperal routing matrices can approximately represent any
2 50 P finite MAP, but as shown Egs. (10)-(12) need not hold

19 2737 i
5 T 1 in that case.
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APPENDIX

In the following we give a detailed proof of the paper's maiedrem.

Proof of Th. 2: '
In the following we will calculateE[X° X! ... X/*] =

k k
[T li!) a(=Do)~ IT [Pl (Do)~ | 17
=0

j=

—_

by determining the individual expressions of the right side

Lemma 1:

J .

k k 1
s J

s=0

Proof: Proof by induction ory.

base casg = 0:

: k k+1
' holds, since(]) = ("F) =1
induction stepj — j + 1:

s=0

=2 () ()

s=0

k+j+1> <k+j+1>
= : +( .
j j+1

k+ji+1) (k+j+1)
gk + 1) (7 + 1)k
G+1)+(k+1)
(k+1)!I(j +1)!

S(GS

= (k+j+1)!=«

<k+j+2>
Jj+1

Theorem 3:Let (N, B,),Q) be an SMAP with doubly stochastic mat}, then we have fok > 1:

(~Do) H((i:0.9). Gret) = a0 (vt + Dutin) (7717
P((i,b,5), (j,e,t)) = 8(t, 1)p(j, ) Q" (3, )
alihs) = %5(5,1);7(@',1))

Proof:
Eq. (17): by induction.
base casé = 1:
We showd((z,b,s), (I,d,u)) = Zj,c,t Do Y((4,b,5), (j,¢,t))Do((4, ¢, 1), (1,d, u))

(16)

17)

(18)
(19)



N m(j) r(j,c)
> 5((3,b), (G, )y (s, t + Dpali, b)~16((, 0), (1 d)) (i, ) [=6 (8w = Dy (t,v(d, ¢)) + 6(F, w)]
=1 c=1 t=1
! r(i,b)
= 5((i,), (1,d) > (s t+ 1)[=6(t,u — 1)y(t, (i, b)) + (¢, w)]
t=1

|
(o2
—~

(iv b)v (lv d))[_7(s’u)7(u - 1,7‘(’i, b)) + /7(3’u + 1)]
6((27 b)? (lv d))[_’}/(s? u) + 7(37 u -+ 1)]

|
(=)
-~
S5
~
SN—
=9
—~
»
S
SN—

induction step

(=Do)~ " (i, b, 5), (j. e, 1))
N m(l)r(l,d)

= 35 3 S0, (oo DB . G DL ("7
=1 d=1 u=1
= (.0, G ) a6 3 (F7 )
= 6((i,b), (j, 0))p(i, b) " F (s, t + 1) <k ;r_t; s) using Lemma 1
Eq. (18): by induction.
base casé = 1:
P= (—Do)_lDl.
P((i,b,s), (j,c, 1))
N m(l)r(,d)
=3 " 6((0,b), (Ld)y(s,u+ (i, b) 1 6(¢, )8 (u, v (1, d))q(l, §)p(j, ) (1, d)
=1 d=1 u=1
r(i,b)
= > (s, u+1)5(t, 1)6(u, (3, b))q (i, 5)p(j, )
u=1
=6(t,1)p(4, 0)Q(4, )

induction step

N
,0) > Q,1)QF(1,5) sinced ,p(l,d) =1, VIeN.

=1

= 5(t, 1)p(j,0)Q (4, 4)



Eq. (19): We showyP = « by

Obviouslyal” =1 holds.
Lemma 2:Define forg = {0,...,k—1},k € N

Vg =
Wy =

ThenVi e NV :

vg(i,b,s) = wy(i), Vb e M(i),s € R(i,b)

Proof: by induction ong.

base casg = 0:

N
SO ko (u, V)p(l, d)QL 1 (i, 1)

j=1 c=1 t=1 I=1 d=1 u=1

(1, d), (j,c)v(u,t + 1)M(l,d)_ik <Zk —tl_—i—i — u>
N m(j) r(j,c) ‘
kllp( —an) (g (i oyt (T L HEL
=2 D lllp(, Q) (i, Hu(j,c) ™ (Zk t—1 >
j=1 c=1 t=1
N m(j) ‘ |
— Z Q(ak—ak—l)(i7j)[ik!]p(j7 C)/L(], C)—ik <Zk :_(‘774(5)7 C) 1_ 1) using Lemma 1
j=1 c=1 o) —
N .
= 32 QI T R ()
7=1
= (Q(ak—akfl)Dzag(Eik)1T> (Z) _ Wo(z)

induction stepg — g + 1 :
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Vgt1(i, b, 5)

[ik—(g+1)] P@r—(g+1) —ak- (”2))(—D0)_i’“*<9+1)vg> (i,b, )

N 1) r(l,d)
D

3
3

m(j) r(j,c)

N
D200 Dl (o 13 Dp(L QU =) i )
= =1

—_

c=1 t=

—
<8
Il

—

1 u=

<.

)—1—|—t—u
t—u

(1, d), (G, )y (st + V)pu(l,d) s (i’f—@“ >wg<j>

m(j) . .

) —1

Qoo g (1) Y iy It o) (o IO
=1 T(],C) -1

I
,MZ

<
Il
-

Q(ak—(9+1)_ak*(9+2)) (’L, ])Wg (j)Eiki(g“) (‘7)

I
.MZ

<
Il
—

(Q(a’“*(ﬁm_a’“*(g“))Diag(Ei"*(g“))Wg) (Z) = wg+1(i)

Finally we show
. 1.
[Z()'] Oé(—D())_ZOVk_l = NEZOWk_l

which completes the proof of Th. 2:

lio!] a(— Do)_ZOVk 1

i=1 b=1 s=1 [=1 d=1 u=1
Nmi)r(i,b)le)rl,d)1 i~ 14s—u
=[] D> >N 500 Dp(L, d)3((1. ), (0. )y(u, s + Dp(l,d) (0 e >vk_1(z',b,s)
i=1 b=1 s=1 I=1 d=1 u=1
N m(i) r(i,b i
— %Z lio!] p(i,b)u(i, b))~ (ZO L +f 1>wk 1(i) using Lemma 2
i=1 b=1 s=1 s
| N
= > E"(i)wy_1(i) using Lemma 1 and (3)
=1
1
= NEZOWk—l



