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Abstract—This paper defines Structured Markovian Ar-
rival Processes (SMAPs). An SMAP consists of several
blocks each being represented by a random variable
specifying the duration of staying in that block. Leaving a
block indicates an arrival event of the SMAP. The routing
between blocks is governed by a stochastic matrixQ. It
is shown that the joint moments of the SMAP can be
directly determined from the moments of the block random
variables and routing matrix Q, if Q is doubly stochastic.
The characteristics of the SMAP can be computed very ef-
ficiently if Q is in addition circulant. Furthermore we show
that for given block random variables the determination
of a routing matrix Q and thus the fitting of the SMAP
essentially results in solving a set of linear equations.

I. INTRODUCTION

Since the seminal work of Neuts [19] Markovian
Arrival Processes (MAPs) are commonly used for the de-
scription of complex arrival processes in Markov models.
Especially their use in analytical models like queueing
network models has been investigated intensely [8], [11],
[12], [15], [23]. It is a considerable problem to find
the parameters of a MAP so that the characteristics
of an arrival process are captured accurately. Normally
those characteristics are given as a sample (measured or
from a simulation trace) or as specific statistical figures,
like e.g. the joint moments of the interarrival times.
Corresponding to these two forms of descriptions of an
arrival process there are two major classes of fitting
methods [16]: Fitting based on the sample data and
fitting based on information extracted from the sample.
An example of the first class of fitting methods is
the expectation-maximisation method (e.g. [5], [22]). A
drawback of this fitting method is that its computational
complexity depends on the size of the sample data. In
contrast, the second class of fitting methods offers the
possibility to examine large datasets, since the calcula-
tion of derived characteristics (e.g. mean, variance etc.)
is less computationally intensive. In this context several
papers deal with the fitting of small MAPs usually
consisting of a few states (e.g. [9], [10]), so that the
state space of the overall performance model is still

of manageable size, but with the drawback of covering
only restricted forms of autocorrelations. Recently [21]
presented a minimal representation of MAPs based on
the joint moments of the interarrival time process and
showed that properly chosenn2 parameters are sufficient
to determine a MAP withn states. Even more it is
sufficient to consider moments of the interarrival time
and joint moments of consecutive(!) interarrival times to
capture also the long range behaviour and to characterise
a MAP.

In spite of such results there are still open problems
concerning the characterisation of MAPs. One problem
concerns a canonical representation of MAPs and [2]
suggests to look for specific structures of MAPs for a
better understanding. In this paper we investigate such a
specific structure. In contrast to the recommendation of
[2] we do not concentrate on the level of the state space,
but try to consider MAPs from a more abstract point
of view: A MAP consists of several blocks represented
by random variables specifying the duration of internal
behaviour. Leaving a block indicates an arrival event and
the routing between blocks is described by a routing
matrix Q. The main result of this paper expresses that
the joint moments of the MAP can be determined from
the moments of the block random variables and routing
matrix Q, if Q is doubly stochastic. A special class of
doubly stochastic routing matrices are circulant matrices
and we additionally show that for given block distribu-
tions the fitting of MAPs essentially results in solving a
set of linear equations for determining a circulant routing
matrix.

The outline of the paper is as follows. In Sect. II we
present some basic definitions before we give the main
result in Sect. III. Sect. IV considers circulant routing
matrices.

II. BASIC DEFINITIONS

MAPs are usually defined by two square matrices
D0 and D1 of the same order, such that the sum
D = D0 + D1 is the generator of an irreducible
Markov chain. Elements of matrixD1 describe tran-
sitions between states being associated with an arrival
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and off-diagonal elements of matrixD0 are associated
with internal transitions of the MAP. The steady state
probability vectorπ is given by πD = 0, π1T = 1
where1 = (1, . . . , 1) is a vector of ones. In this paper
we will denote vectorsv as row vectors andvT and
CT denote the transpose of vectorv and matrix C,
resp. We will use superscripts for matrices and vectors
as follows: for a matrixC, Ci is the i-th power ofC
and for a parameterised vectorv, vi denotes the vector
for parameteri andvi(j) is thej-th component ofvi.
The discrete time process embedded at arrival instants
is given by the state transition probability matrixP =
(−D0)−1D1 and the corresponding steady state proba-
bility vector α is given byαP = α,α1T = 1.
In steady state, the distribution of the interarrival timeX
is given byP [X < t] = 1 − αeD0t1T . The moments of
X and the joint moments of the interarrival time process
are given by [15], [21]:

• k-th moment:

E[Xk] = k!α(−D0)−k1T (1)

• joint moments of the0 = a0 < a1 < . . . < ak-th
interarrival times:E[Xi0

0 X
i1
a1
. . . Xik

ak
] =

k
∏

j=0

[ij !] α(−D0)−i0

k
∏

j=1

[

P(aj−aj−1)(−D0)−ij

]

1T (2)

[21] shows that the joint moments uniquely determine
a MAP and that the corresponding matrix representations
(D0,D1) are all similar.

III. STRUCTURED MAP

The main idea of this paper is to impose the following
structure on the MAP. A structured MAP is defined
here by a finite number of blocksi, i = 1, . . . , N

and a routing matrixQ = (q(i, j)) ∈ R
+
0

N×N
. Each

block i is described by a random variableYi specifying
the duration of staying in that block. Leaving blocki
indicates an arrival event and the process enters block
j with probability q(i, j). The situation is similar to a
closed queueing network where a single customer moves
around and leaving a station issues an arrival event. In
this paper we assume that theYi have a hyper-Erlang
distribution in order to simplify some notations. The
choice of hyper-Erlang distributions is no restriction,
since hyper-Erlang distributions can approximate general
non-negative distributions arbitrarily closely [6], [18],
[22].

Fig. 1 depicts the general structure of the MAP. The
parameters of the hyper-Erlang distribution of block
i, i ∈ {1, . . . , N} are

block j

q(i, j)

q(j, i)

· · ·

· · ·

block i

i, 1, 1
p(i, 1) i, 1,

i,m(i),

...
...

i, m(i), 1

µ(i, 1)

µ(i,m(i))

p(i,m(i)) r(i, m(i))

r(i, 1)

...

Yj

Fig. 1. Structured MAP

• m(i) ∈ N denoting the number of Erlang-branches.
• r(i, b) ∈ N is the number of states of branchb.
• p(i, j) ∈ [0, 1], j ∈ {1, . . . ,m(i)} denoting

the probability of selecting branchj. Note that
∑m(i)

j=1 p(i, j) = 1.
• µ(i, j) ∈ R

+ is the parameter of the exponential
distributions of branchj.

The moments of the hyper-Erlang distribution of block
i are given by [22]

E[Y k
i ] =

m(i)
∑

b=1

p(i, b)
k!

µ(i, b)k

(

k + r(i, b) − 1

r(i, b) − 1

)

(3)

and since the number of states is finite all moments do
exist. For a concise notation we defineN := {1, . . . , N},
M(i) := {1, . . . ,m(i)}, R(i, b) := {1, . . . , r(i, b)}.

The state of the MAP is given by(i, b, s), i ∈ N ,
b ∈ M(i), s ∈ R(i, b) wherei denotes the block number,
b is the current branch of the hyper-Erlang distribution
ands the corresponding current phase.

Definition 1 (SMAP):A structured MAP (SMAP) is
a MAP given by(N,B,Y,Q) whereN ∈ N denotes the
number of blocks,B with | B |= N is a set of blocks and
Y = {Y1, . . . , YN} is a set of random variables withYi

being the random variable for blocki. Q = (q(i, j)) ∈
R

+
0

N×N
is an irreducible stochastic matrix whose entries

q(i, j) specify the probability of entering blockj after
having left blocki.

In order to simplify notation, we use two auxiliary
functions. Define for arbitrary ordered setsS function
γ : S × S 7→ {0, 1} by

γ(i, j):=

{

1 if i < j
0 otherwise
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and define for arbitrary setsS the discrete delta function
δ : S × S 7→ {0, 1} as

δ(i, j):=

{

1 if i = j
0 otherwise

With these definitions the matricesD0,D1 of an SMAP
can be written as

D0((i, b, s), (j, c, t)) = δ((i, b), (j, c))µ(i, b)
[δ(s, t− 1)γ(s, r(i, b)) − δ(s, t)]

D1((i, b, s), (j, c, t)) = δ(t, 1)δ(s, r(i, b))
q(i, j)p(j, c)µ(i, b)

(4)

As expectedD := D0 + D1 is the generator of a
Markov chain, since

N
∑

j=1

m(j)
∑

c=1

r(j,c)
∑

t=1

D0((i, b, s), (j, c, t)) + D1((i, b, s), (j, c, t))

=

N
∑

j=1

m(j)
∑

c=1

r(j,c)
∑

t=1

{

δ((i, b), (j, c))µ(i, b)

[δ(s, t− 1)γ(s, r(i, b)) − δ(s, t)]

+δ(t, 1)δ(s, r(i, b))q(i, j)p(j, c)µ(i, b)
}

=

r(i,b)
∑

t=1

{

[δ(s, t − 1)γ(s, r(i, b)) − δ(s, t)] µ(i, b)
}

+δ(s, r(i, b)µ(i, b)

N
∑

j=1

m(j)
∑

c=1

q(i, j)p(j, c)

=

r(i,b)
∑

t=1

{

[δ(s, t − 1)γ(s, r(i, b)) − δ(s, t)] µ(i, b)
}

+δ(s, r(i, b)µ(i, b) = 0

The global balance equationsπ(D0 + D1) = 0 are
given by the following set of equations
∀i ∈ N , b ∈ M(i), s ∈ R(i, b) :

π(i, b, s) = π(i, b, s − 1) if s > 1 (5)

π(i, b, s)µ(i, b) =

N
∑

k=1

m(k)
∑

j=1

π(k, j, r(k, j))µ(k, j)

q(k, i)p(i, b) if s = 1 (6)

In the following we will assume that the routing matrix
Q is doubly stochastic [13]. A doubly stochastic matrix
is also called bistochastic.

Definition 2: A matrix Q ∈ R
+N×N

0 is doubly stochas-
tic iff

N
∑

j=1

q(i, j) =

N
∑

j=1

q(j, i) = 1, ∀i ∈ N (7)

As we will see assumingQ to be doubly stochastic
simplifies the calculation of the joint moments of the
SMAP. Furthermore we can determine the steady state
distribution of the Markov chain directly.

Theorem 1:Let (N,B,Y,Q) be an SMAP with dou-
bly stochastic matrixQ, then the vectorπ satisfying
πD = 0, π1T = 1 is given by

π(i, b, s) = G
p(i, b)

µ(i, b)
(8)

∀i ∈ N , b ∈ M(i), s ∈ R(i, b), with

G = [
∑

i∈N

m(i)
∑

b=1

r(i, b)
p(i, b)

µ(i, b)
]−1 (9)

G is a normalisation constant ensuring
∑

π(i, b, s) = 1.
Note that 1

G =
∑

iE[Yi] whereE[Yi] is the first moment
(mean) of the hyper-Erlang distribution of blocki.

Proof: of Th. 1:
Eq. (5) obviously holds, since (8) implies
π(i, b, s) = π(i, b, t),∀s, t ∈ R(i, b).
Applying (8) to (6) gives

G
p(i, b)

µ(i, b)
µ(i, b) = G

N
∑

k=1

m(k)
∑

j=1

p(k, j)

µ(k, j)
µ(k, j)q(k, i)p(i, b)

= Gp(i, b)

N
∑

k=1

q(k, i)

m(k)
∑

j=1

p(k, j)

= Gp(i, b)

If Q is doubly stochastic, we will call an SMAP
a doubly stochastic SMAP. The next theorem shows
that the joint moments of doubly stochastic SMAPs can
be directly calculated from the moments of the block
distributions.

Define the vectorEk :=
(

E[Y k
1 ], E[Y k

2 ], . . . , E[Y k
N ]
)

whereE[Y k
i ] is thek-th moment of random variableYi.

For a vectorv ∈ R
N let Diag(v) = (d(i, j)) ∈ R

N×N

be the diagonal matrix withd(i, j) = δ(i, j)v(i).
Theorem 2:Let (N,B,Y,Q) be an SMAP with dou-

bly stochastic matrixQ, then the following holds for
the joint moments of the0 = a0 < a1 < . . . < ak-th
interarrival times:

E[Xi0
0 . . . Xik

ak
] =

1

N
Ei0

k
∏

j=1

[

QmjDiag(Eij )
]

1T (10)

with mj := aj − aj−1, j = 2, . . . , k, m1 := a1 and 1

being here anN -dimensional vector of ones.
Proof: We give an outline of the proof here. For

details please see the appendix.
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The expressions on the right hand side of (2) can be
calculated directly using

(−D0)−k((i, b, s), (j, c, t)) = δ((i, b), (j, c))γ(s, t + 1)

µ(i, b)−k

(

k − 1 + t− s

t− s

)

Pk((i, b, s), (j, c, t)) = δ(t, 1)p(j, c)Qk(i, j)

α(i, b, s) =
1

N
δ(s, 1)p(i, b)

and showing that for

vk :=
k
∏

j=1

[ij !]
[

P(aj−aj−1)(−D0)−ij

]

1T

wk :=

k
∏

j=1

[

Q(aj−aj−1)Diag(Eij )
]

1T

we have∀i ∈ N :

vk(i, b, s) = wk(i), ∀b ∈ M(i), s ∈ R(i, b)

which finally gives

[i0!] α(−D0)−i0vk =
1

N
Ei0wk

It is worth noting that the expressions in (10) depend
on the number of blocks and not on the number of states
of the SMAP.

Corollary 1: For an SMAP(N,B,Y,Q) with doubly
stochastic matrixQ, the following holds:
∀i, j,m ∈ N0 :

E[Xi] =
1

N
Ei1T (11)

E[Xi
0X

j
m] =

1

N
EiQmEjT

(12)

Proof: Eq. (11) can be directly verified by calculat-
ing E[Xi] = i!α(−D0)−i1T , it also follows from (10),
using the convention

∏0
j=1 . . . = I. Eq. (12) follows

from (10) for k = 1, sinceDiag(Ej)1T = EjT
.

Note that Eq. (11) expresses that thei-th moment of
X is given by the arithmetic mean of thei-th moments of
the random variables of the blocks. Eq. (11) also shows
that the moments of the interarrival time are independent
of the routing matrixQ whereas Eq. (12) shows that the
joint moments are determined by matrixQ for given
block moments.

Example 1:Let (N,B,Y,Q) be an SMAP with

N = 2, | B |= 2,Y = {Y1, Y2},Q =

(

0 1
1 0

)

,

whereY1 is Erlang-2 distributed with parametersm(1) =
1, r(1, 1) = 2, p(1, 1) = 1, µ(1, 1) = λ and Y2 is
hyper-exponentially distributed with parametersm(2) =
2, r(2, 1) = r(2, 2) = 1, p(2, 1) = 1 − p(2, 2) =
p, µ(2, i) = µi, i ∈ {1, 2}. Since

E[Y k
1 ] =

(k + 1)!

λk

E[Y k
2 ] = p

k!

µk
1

+ (1 − p)
k!

µk
2

the following holds for the SMAP:

E[Xk] =
1

2

(

(k + 1)!

λk
+ p

k!

µk
1

+ (1 − p)
k!

µk
2

)

E[Xi
0X

j
1 ] =

1

2

(

Ei(2)Ej(1) + Ei(1)Ej(2)
)

=
1

2

((

p
i!

µi
1

+ (1 − p)
i!

µi
2

)

(j + 1)!

λj

+

(

p
j!

µj
1

+ (1 − p)
j!

µj
2

)

(i+ 1)!

λi

)

If Q is NOT doubly stochastic, Th. 2 and Cor. 1 need
not hold. E.g. if we change matrixQ from Ex. 1 to

Q :=

(

1
2

1
2

1 0

)

then Eq. (11) still gives

E[X] =
1

λ
+

p

2µ1
+

1 − p

2µ2

but evaluating (1) using

(−D0)−1 =









1
λ

1
λ 0 0

0 1
λ 0 0

0 0 1
µ1

0

0 0 0 1
µ2









and α =

(

2

3
, 0,

1

3
p,

1

3
(1 − p)

)

(where the first two states represent the Erlang-2 distri-
bution) gives

E[X] =
4

3λ
+

p

3µ1
+

1 − p

3µ2

showing that Eq. (11) does not hold in this example
where Q is not doubly stochastic. The reason is that
for irreducible doubly stochastic routing matricesβQ =
β, β1T = 1 holds if β = 1

N 1, thus giving the possibility
to establish a relation between the block moments and
the moments of the whole MAP being independent of the
routing matrixQ as expressed in Eq. (11). Concerning
MAP fitting Eq. (11) is of special interest, since it
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suggests to first fit the distributions of the blocks. This
step might also include the choice of a proper value for
N . Once the block distributions are identified Eq. (12)
can be employed to determine the correlation structure
by selecting a suitable routing matrix.

IV. C IRCULANT SMAPS

As shown in the last section a doubly stochastic
routing matrix imposed on a block representation of
a MAP gives us concise expressions for the MAP’s
characteristics in terms of the characteristics of the
blocks. A natural question is thus how to construct
doubly stochastic matrices.

Birkhoff’s theorem states that every doubly stochastic
matrix is a convex combination of finitely many permu-
tation matrices [13]. Furthermore they form a semigroup
under matrix multiplication. Doubly stochastic matrices
have been investigated sufficiently, see e.g. [13], [17].
Trivial examples of doubly stochastic matrices are

• Q = (q(i, j)) with q(i, j) := 1
N ,∀i, j ∈ N and

• Q = (q(i, j)) with q(i, j) := δ(((i + 1) mod N),
(j mod N)),∀i, j ∈ N . This matrix describes an
SMAP where the blocks are daisy-chained and after
leaving blockN the process enters block1. Note
that Qk(i, j) = δ(((i+ k) mod N), (j mod N)).

Both examples are special cases of so-called circulant
matrices [4], [7] which have several nice properties and
provide an option to define doubly stochastic matrices
straightforward as follows.
Let q1, . . . , qN be the probabilities of a discrete proba-
bility distribution, i.e.qi ≥ 0 and

∑N
i=1 qi = 1. Define a

non-diagonal circulant matrix (i.e.q1 < 1) by

Q :=

















q1 q2 · · · qN−1 qN
qN q1 q2 qN−1
... qN q1

. . .
...

q3
. . . . . . q2

q2 q3 · · · qN q1

















where each row results from a cyclic shift of the row
above it. By constructionQ is a doubly stochastic and
irreducible(!) matrix. Since matrixQ is determined by
the valuesq1, . . . , qN it is common to use the short-hand
notationcirc(q1, . . . , qN ) for Q. Circulant matrices are
special cases of Toeplitz matrices [7] and the powers
of circulant matrices can be calculated very efficiently,
since every circulant matrixQ has eigenvectors

vm =
1√
N

(

1, e−2πim/N , . . . , , e−2πim(N−1)/N
)

and corresponding eigenvalues

ψ(m) =

N
∑

k=1

qke
−2πim(k−1)/N

for m = 0, . . . , N − 1, where i is here the complex
unit andπ Ludolph’s number [7].Q can be expressed
in the formQ = VΨV∗ whereV has the eigenvectors
vm as columns andΨ = Diag(ψ) is a diagonal matrix
with the eigenvalues ofQ at the diagonal.V∗ is the
conjugate transpose ofV for which one can show here
that V is unitary (i.e.V∗ = V−1), so thatV∗V = I

holds givingQi = VΨiV∗. Thus the powers ofQ can
be calculated very efficiently, because the eigenvectors
vm do only depend onN and the eigenvaluesψ(m),
which are the elements of the diagonal matrixΨ, can be
efficiently determined by applying fast Fourier transform
algorithms.

In the following we will have a closer look on
SMAPs with circulant routing matrices. IfQ is a doubly
stochastic and circulant matrix, we will call an SMAP a
circulant SMAP .

As mentioned, [21] shows that a (nonredundant)
MAP can be characterised by the momentsE[Xi], i =
1, . . . 2n−1 and the lag-1 joint momentsE[Xi

0X
j
1 ], i, j =

1, . . . , n−1 wheren is the number of states(!). Therefore
it seems to be sufficient to consider the equations

NE[Xi] = Ei1T (13)

NE[Xi
0X

j
1 ] = EiQEjT

(14)

Surely we cannot expect to characterise the MAP with
these equations, since for givenN we know the number
of blocks, but not the number of states of the underlying
MAP. However, as mentioned before, Eqs. (13) and (14)
suggest a similar approach as investigated in [14] to
first fit the interarrival time distribution using Eq. (13)
and then to fit the correlation structure using Eq. (14).
Especially the last step is straight-forward for circulant
routing matrices:

Assume that a set of distributions and thus the corre-
sponding momentsEi are given all satisfying Eq. (13)
and that a circulant routing matrixQ = circ(q1, . . . , qN )
has to be determined. If we defineq = (q1, . . . , qN ) and
c(i, j) = NE[Xi

0X
j
1 ] Eq. (14) can be rewritten as

c(i, j) = qU (Ei ⊗Ej)
T

(15)

with
U = (u(a, b)) ∈ R

N×N2

,

u(a, b) = δ((b− 1) div N, (b− a) mod N),

a = 1, . . . , N, b = 1, . . . , N2 and where⊗ denotes the
Kronecker product [3].
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Example 2:Let (N,B,Y,Q) be the SMAP from
Ex. 1 now with unspecified routing matrixQ =
circ(q1, 1 − q1) and given joint momentc(1, 1). Since
N = 2 we have

U =

(

1 0 0 1
0 1 1 0

)

and thus the equation forq = (q1, 1 − q1) is

q





4
λ2 +

(

p
µ1

+ (1−p)
µ2

)2

4
λ

(

p
µ1

+ (1−p)
µ2

)



 = (c(1, 1))

For the following concrete values for the parameters of
the random variablesYi: λ = 1, µ1 = 1/10, µ2 = 10,
p = 1/3 and assumingc(1, 1) = 15 one getsq =

(

5
7 ,

2
7

)

as a solution.

If several joint momentsc(i, j) are given we can build
a system of linear equations for the unknown vectorq

by concatenating the column vectorsU(Ei ⊗ Ej)
T

. E.g.,
given the joint momentsc(i, j) and c(k, l), the system
of linear equations is

q
(

U(Ei ⊗ Ej)
T | U(Ek ⊗ El)

T
)

= (c(i, j), c(k, l))

with an additional equation expressingq1T = 1.
Example 3:Let (N,B,Y,Q) be an SMAP with

N = 3, | B |= 3,Y = {Y1, Y2, Y3} where Y1, Y2 are
from Ex. 1 andY3 is exponentially distributed with
parameterτ , so that

Ek =

(

(k + 1)!

λk
, p
k!

µk
1

+ (1 − p)
k!

µk
2

,
k!

τk

)

With matrix

U =





1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0





the column vectors for building the set of linear
equations are given byU (Ei ⊗ Ej)

T
=





Ei(1)Ej(1) + Ei(2)Ej(2) + Ei(3)Ej(3)
Ei(1)Ej(2) + Ei(2)Ej(3) + Ei(3)Ej(1)
Ei(1)Ej(3) + Ei(2)Ej(1) + Ei(3)Ej(2)





If we assume the following concrete values for the pa-
rameters of the random variablesYi: λ = 1, µ1 = 1/10,
µ2 = 10, p = 1/3 and τ = 2 and assumec(1, 1) =
15, c(1, 2) = 220 the system of linear equations is

q









1581
100

119481
500 1

19
2

6903
50 1

19
2

2737
50 1









= (15, 220, 1)

resulting in q =
(

550
631 ,

73924
1314373 ,

94799
1314373

)

as a feasible
solution.

Certainly, although checking whether a circulant rout-
ing matrix exists and its determination is reduced here
to the well-known problem of solving a system of linear
equations, MAP fitting in general is still a non-trivial
problem also for circulant SMAPs. The reason is that
possible solutions of the system of linear equations
depend on the chosen joint momentsc(i, j) and on the
selected distributions of the blocks. E.g., a trivial solution
to Eq. (13) isEi = E[Xi]1 which results in an SMAP
where essentially each block distribution coincides with
the distribution of the SMAP. Then

E[Xi
0X

j
1 ] =

1

N
E[Xi]E[Xj ]1Q1T = E[Xi]E[Xj ]

indicates (as expected) that the interarrival times are
independent irrespective of the choice ofQ.

V. CONCLUSIONS

As we have seen, taking advantage of structure and
double stochasticity supports a different view on MAPs,
where one can abstract from the level of the state space.
Eq. (10)-(12) express the characteristics of a MAP on
the basis of the characteristics of structural entities.

In essence an SMAP is a network of probability
distributions whose entire characterisation as a proba-
bility distribution can be simply expressed by Eq. (11)
due to double stochasticity. Since Eq. (11) considers
the moments, feasible solutions must also imply the
existence of a solution to the Hamburger (resp. Stieltjes)
moment problem (cf. [1], [20]). Future research might be
directed towards finding a suitable family of distributions
which can be easily fitted on the basis of Eq. (11),
but still span a suitable vector space for satisfying
Eqs. (10) and (12). As shown in Sect. IV circulant
matrices are helpful when determining a suitable routing
matrix, since they are by construction doubly stochastic
and what is even more important irreducible. Once the
block distributions respectively their moments are given,
a routing matrix can be determined by solving a system
of linear equations.

Returning to the starting point of this paper we got
some insight into MAPs on an abstract level. An inter-
esting question for future research is whether circulant
or at least doubly stochastic SMAPs can (approximately)
represent any MAP, so that they can serve as a basis
for a canonical representation. Obviously, SMAPs with
general routing matrices can approximately represent any
finite MAP, but as shown Eqs. (10)-(12) need not hold
in that case.
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APPENDIX

In the following we give a detailed proof of the paper’s main theorem.

Proof of Th. 2:
In the following we will calculateE[Xi0

0 X
i1
a1
. . . Xik

ak
] =

k
∏

j=0

[ij !] α(−D0)−i0

k
∏

j=1

[

P(aj−aj−1)(−D0)−ij

]

1T

by determining the individual expressions of the right side.

Lemma 1:
j
∑

s=0

(

k + s

s

)

=

(

k + j + 1

j

)

, ∀k, j ∈ N0 (16)

Proof: Proof by induction onj.

base casej = 0:
holds, since

(k
0

)

=
(k+1

0

)

= 1
induction stepj → j + 1:

j+1
∑

s=0

(

k + s

s

)

=

j
∑

s=0

(

k + s

s

)

+

(

k + j + 1

j + 1

)

=

(

k + j + 1

j

)

+

(

k + j + 1

j + 1

)

=
(k + j + 1)!

j!(k + 1)!
+

(k + j + 1)!

(j + 1)!k!

= (k + j + 1)! ∗ (j + 1) + (k + 1)

(k + 1)!(j + 1)!

=

(

k + j + 2

j + 1

)

Theorem 3:Let (N,B,Y,Q) be an SMAP with doubly stochastic matrixQ, then we have fork ≥ 1:

(−D0)−k((i, b, s), (j, c, t)) = δ((i, b), (j, c))γ(s, t + 1)µ(i, b)−k

(

k − 1 + t− s

t− s

)

(17)

Pk((i, b, s), (j, c, t)) = δ(t, 1)p(j, c)Qk(i, j) (18)

α(i, b, s) =
1

N
δ(s, 1)p(i, b) (19)

Proof:
Eq. (17): by induction.

base casek = 1:
We showδ((i, b, s), (l, d, u)) =

∑

j,c,t D0
−1((i, b, s), (j, c, t))D0((j, c, t), (l, d, u))
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N
∑

j=1

m(j)
∑

c=1

r(j,c)
∑

t=1

δ((i, b), (j, c))γ(s, t + 1)µ(i, b)−1δ((j, c), (l, d))µ(j, c)[−δ(t, u − 1)γ(t, r(j, c)) + δ(t, u)]

= δ((i, b), (l, d))

r(i,b)
∑

t=1

γ(s, t+ 1)[−δ(t, u − 1)γ(t, r(i, b)) + δ(t, u)]

= δ((i, b), (l, d))[−γ(s, u)γ(u − 1, r(i, b)) + γ(s, u+ 1)]

= δ((i, b), (l, d))[−γ(s, u) + γ(s, u+ 1)]

= δ((i, b), (l, d))δ(s, u)

induction step

(−D0)−(k+1)((i, b, s), (j, c, t))

=

N
∑

l=1

m(l)
∑

d=1

r(l,d)
∑

u=1

δ((i, b), (l, d))γ(s, u + 1)µ(i, b)−1δ((l, d), (j, c))γ(u, t + 1)µ(l, d)−k

(

k − 1 + t− u

t− u

)

= δ((i, b), (j, c))µ(i, b)−(k+1)γ(s, t+ 1)
t
∑

u=s

(

k − 1 + t− u

t− u

)

= δ((i, b), (j, c))µ(i, b)−(k+1)γ(s, t+ 1)

(

k + t− s

t− s

)

using Lemma 1

Eq. (18): by induction.

base casek = 1:
P = (−D0)−1D1.

P((i, b, s), (j, c, t))

=

N
∑

l=1

m(l)
∑

d=1

r(l,d)
∑

u=1

δ((i, b), (l, d))γ(s, u + 1)µ(i, b)−1δ(t, 1)δ(u, r(l, d))q(l, j)p(j, c)µ(l, d)

=

r(i,b)
∑

u=1

γ(s, u+ 1)δ(t, 1)δ(u, r(i, b))q(i, j)p(j, c)

= δ(t, 1)p(j, c)Q(i, j)

induction step

(P)(k+1)((i, b, s), (j, c, t))

=
N
∑

l=1

m(l)
∑

d=1

r(l,d)
∑

u=1

δ(u, 1)p(l, d)Q(i, l)δ(t, 1)p(j, c)Qk (l, j)

= δ(t, 1)p(j, c)

N
∑

l=1

Q(i, l)Qk(l, j) since
∑

d p(l, d) = 1, ∀l ∈ N .

= δ(t, 1)p(j, c)Qk+1(i, j)
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Eq. (19): We showαP = α by

α(j, c, t)

=

N
∑

i=1

m(i)
∑

b=1

r(i,b)
∑

s=1

1

N
δ(s, 1)p(i, b)δ(t, 1)p(j, c)q(i, j)

=
1

N
δ(t, 1)p(j, c)

N
∑

i=1

q(i, j)

m(i)
∑

b=1

p(i, b)

=
1

N
δ(t, 1)p(j, c)

Obviouslyα1T = 1 holds.
Lemma 2:Define forg = {0, . . . , k − 1}, k ∈ N

vg :=
k
∏

j=k−g

[ij !]
[

P(aj−aj−1)(−D0)−ij

]

1T

wg :=

k
∏

j=k−g

[

Q(aj−aj−1)Diag(Eij )
]

1T

Then∀i ∈ N :

vg(i, b, s) = wg(i), ∀b ∈ M(i), s ∈ R(i, b)

Proof: by induction ong.

base caseg = 0:

v0(i, b, s)

=
(

[ik!]
[

P(ak−ak−1)(−D0)−ik

]

1T
)

(i, b, s)

=

N
∑

j=1

m(j)
∑

c=1

r(j,c)
∑

t=1

N
∑

l=1

m(l)
∑

d=1

r(l,d)
∑

u=1

[ik!]δ(u, 1)p(l, d)Q(ak−ak−1)(i, l)

δ((l, d), (j, c))γ(u, t + 1)µ(l, d)−ik

(

ik − 1 + t− u

t− u

)

=
N
∑

j=1

m(j)
∑

c=1

r(j,c)
∑

t=1

[ik!]p(j, c)Q
(ak−ak−1)(i, j)µ(j, c)−ik

(

ik − 1 + t− 1

t− 1

)

=
N
∑

j=1

m(j)
∑

c=1

Q(ak−ak−1)(i, j)[ik !]p(j, c)µ(j, c)−ik

(

ik + r(j, c) − 1

r(j, c) − 1

)

using Lemma 1

=
N
∑

j=1

Q(ak−ak−1)(i, j)Eik(j)

=
(

Q(ak−ak−1)Diag(Eik)1T
)

(i) = w0(i)

induction stepg 7→ g + 1 :
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vg+1(i, b, s)

=
(

[ik−(g+1)!]P
(ak−(g+1)−ak−(g+2))(−D0)−ik−(g+1)vg

)

(i, b, s)

=

N
∑

j=1

m(j)
∑

c=1

r(j,c)
∑

t=1

N
∑

l=1

m(l)
∑

d=1

r(l,d)
∑

u=1

[ik−(g+1)!]δ(u, 1)p(l, d)Q
(ak−(g+1)−ak−(g+2))(i, l)

δ((l, d), (j, c))γ(u, t + 1)µ(l, d)−ik−(g+1)

(

ik−(g+1) − 1 + t− u

t− u

)

wg(j)

=
N
∑

j=1

Q(ak−(g+1)−ak−(g+2))(i, j)wg(j)

m(j)
∑

c=1

[ik−(g+1)!]p(j, c)µ(j, c)−ik−(g+1)

(

ik−(g+1) + r(j, c) − 1

r(j, c) − 1

)

=
N
∑

j=1

Q(ak−(g+1)−ak−(g+2))(i, j)wg(j)E
ik−(g+1)(j)

=
(

Q(ak−(g+1)−ak−(g+2))Diag(Eik−(g+1))wg

)

(i) = wg+1(i)

Finally we show

[i0!] α(−D0)−i0vk−1 =
1

N
Ei0wk−1

which completes the proof of Th. 2:

[i0!] α(−D0)−i0vk−1

= [i0!]
N
∑

i=1

m(i)
∑

b=1

r(i,b)
∑

s=1

N
∑

l=1

m(l)
∑

d=1

r(l,d)
∑

u=1

α(l, d, u)(−D0)−i0((l, d, u), (i, b, s))vk−1(i, b, s)

= [i0!]
N
∑

i=1

m(i)
∑

b=1

r(i,b)
∑

s=1

N
∑

l=1

m(l)
∑

d=1

r(l,d)
∑

u=1

1

N
δ(u, 1)p(l, d)δ((l, d), (i, b))γ(u, s + 1)µ(l, d)−i0

(

i0 − 1 + s− u

s− u

)

vk−1(i, b, s)

=
1

N

N
∑

i=1

m(i)
∑

b=1

r(i,b)
∑

s=1

[i0!] p(i, b)µ(i, b)−i0

(

i0 − 1 + s− 1

s− 1

)

wk−1(i) using Lemma 2

=
1

N

N
∑

i=1

Ei0(i)wk−1(i) using Lemma 1 and (3)

=
1

N
Ei0wk−1


