

A Framework for Simulation Models of Service-Oriented Architectures

Falko Bause, Peter Buchholz, Jan Kriege, Sebastian Vastag

CRC 559, Computer Science IV

June 28, 2008

Outline

- 1 Motivation
- 2 Background (Collaborative Research Center 559)
 - lacktriangle Process Chains \supset ProC/B
 - ProC/B Example
 - ProC/B Toolset
 - ProC/B Results
- 3 Support for SOA scenarios
 - ProC/B and timeout modelling
 - Combining ProC/B and INET models
- 4 Conclusions

Motivation

Service-Oriented Architecture (SOA)

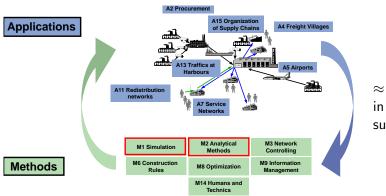
represents a collection of best practices principles and patterns related to service-aware, enterprise-level, distributed computing. (Def. from OASIS)

- QoS, SLAs, ...
 - \implies performance issues are of interest.
- abstract performance models, e.g. manual derivation of analytical models (QNs)
- simulation models
 - cumbersome, error-prone
 - should consider both:

"enterprise-level" + communication (different notations: BPEL, process chains vs. simulation language for networks, protocols)

Our approach

Hybrid Specification

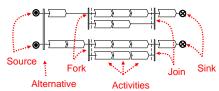

- process chains for "enterprise-level"
- OMNeT++ for network

Collaborative Research Center 559 (1998-2008):

Modelling of Large Logistics Networks

(mechanical engineering, economics, computer science, statistics)

pprox 60 scientists in 14 sub-projects



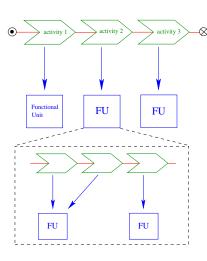
Collaborative Research Center 559 (1998-2008):

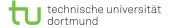
Modelling of Large Logistics Networks

"Common Language": Process Chain Paradigm (by Kuhn)

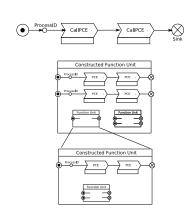
Process Chains describe process patterns

- 1998 descriptive, "semi-formal" (manual transformation into simulation models (additional effort, inconsistencies))
- 98-08 development of $ProC/B \subset Process$ Chains (for automated transformation into simulation models)

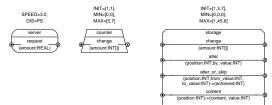

Process Chains, general idea


Process chains describe behaviour: What happens and when?

- activities: PC elements
- sequencing by: sequential concatenation + connectors
- process incarnation + termination: sources + sinks

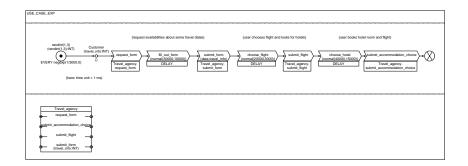

ProC/B, general idea

- Who performs activities?
 - "resources" / functional units capture system structure
- How is it done?

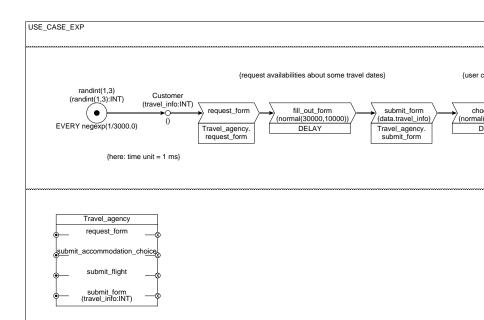


ProC/B hierarchies

Hierarchie ends at standard (pre-defined) FUs:

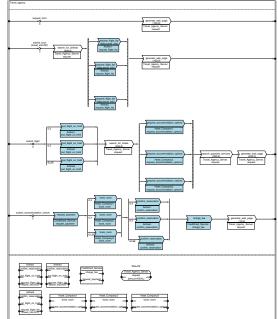


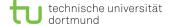
- servers "modelling time" (similar to queues of QNs)
- counters "modelling space"

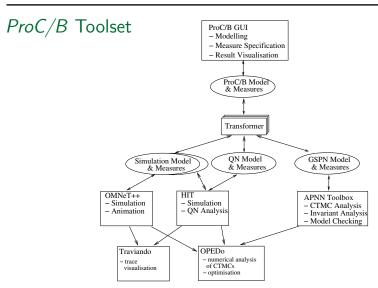

 (act like (multi-dimensional) semaphors)
 storages/buffers: "user-friendly" semaphors

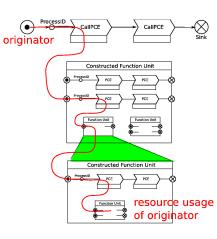
ProC/B example

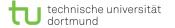

ProC/B example

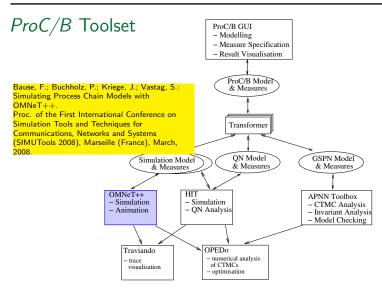



ProC/B example (cont'd)


internal view of FU


ProC/B Results


- "standard" performance measures: throughput, population, response time, ...
- user defined measures ("REWARDS")


All measures can be discriminated with respect to the originator,

e.g. throughput due to . . .

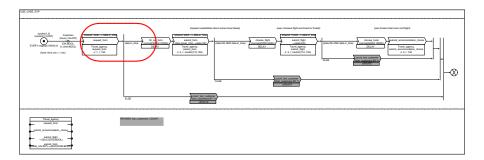
(supports "cost accounting")

OMNeT++ see http://www.omnetpp.org/

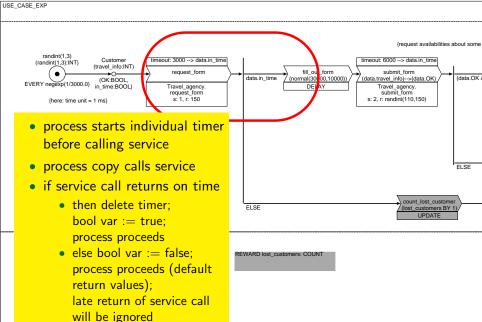
"is a public-source, component-based, modular and open-architecture simulation environment with strong GUI support and an embeddable simulation kernel. Its primary application area is the simulation of communication networks ..."


- simple modules (behaviour implemented as C++ classes)
- compound modules (support hierarchical modelling)
- messages and channels (modules communicate via messages)

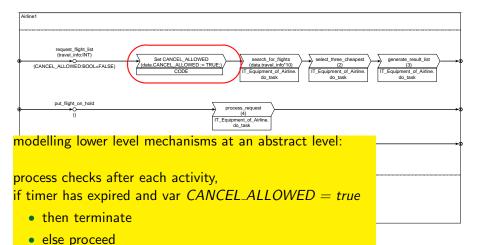
Frameworks are available, one is the INET Framework, which contains IPv4, IPv6, TCP, UDP protocol implementations, and several application models.


Support for SOA scenarios

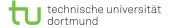
 Integration of a timeout mechanism into ProC/B, for modelling user behaviour


 Combining ProC/B and INET models (into a single OMNeT++ model), for modelling network delays

ProC/B example with timeouts



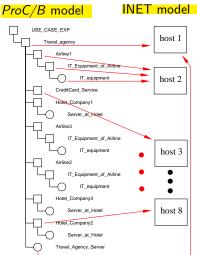
ProC/B example with timeouts


ProC/B example with timeouts (cont'd)

Support for SOA scenarios

 Integration of a timeout mechanism into ProC/B, for modelling user behaviour

 Combining ProC/B and INET models (into a single OMNeT++ model), for modelling network delays

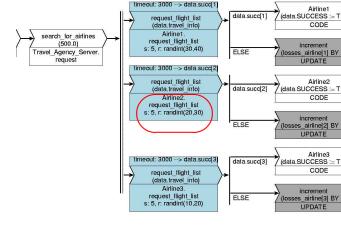

Combining *ProC/B* and INET models

Typical INET models specify load generation in host modules. Main idea:

- all activities of an FU are executed on one host

FU A \mapsto host X FU B \mapsto host Y

 process in FU A calls service of FU B; this initiates exchange of messages between hosts X and Y (if X ≠ Y)



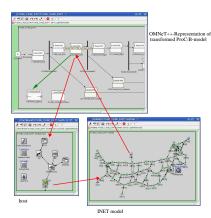
Combining *ProC/B* and INET models (cont'd)

Additional *ProC/B* annotations

- s: amount of data sent
- r: amount of data received

(values interpreted in INET part)

Combining *ProC/B* and INET models (cont'd)


E.g. TCP transmission delay for *ProC/B* remote service call:

- process is suspended
- "INET message" is sent to (modified) host module
- host initiates TCP connection and transmits specified amount of data
- after peer closes connection ProC/B process proceeds, i.e. ProC/B service call starts

Advantages:

- change of INET model only at hosts
- consistent statistics of *ProC/B* part

 A Framework for Simulation Models of Service-Oriented Architectures

22

Example results

Lost customers per second

customer	network delay					
mean inter-arrival	between two routers					
time (sec.)	of INET model	0.001s	0.01s	0.05s	0.075s	0.1s
	lost customers per sec.	0.0650	0.0687	0.1318	0.1879	0.4976
4	standard deviation	0.3517	0.3560	0.4982	0.5538	0.7371
	confidence 90%	20.00%	13.21%	16.63%	11,27%	9.76%
	relative loss	13.0%	13.7%	26.4%	37.6%	99.5%
	lost customers per sec.	0.2007	0.1965	0.2768	0.3754	0.6708
3	standard deviation	0.6110	0.6040	0.7003	0.7922	0.8965
	confidence 90%	10.25%	6.30%	10.27%	8.39%	4.47%
	relative loss	30.1%	29.5%	41.5%	56.3%	100%
2	lost customers per sec.	0.5903	0.6245	0.6795	0.7432	0.9856
	standard deviation	1.0100	1.0693	1.1395	1.1632	1.2273
	confidence 90%	10.00%	10.88%	5.19%	10.24%	3.69%
	relative loss	59.0%	62.5%	68.0%	74.3%	98.6%

(customers arrive in batches of sizes 1,2,3; sim length = 10000 sec. model time)

Conclusions

- Support for modelling SOA scenarios:
 - ProC/B (process chains) allow for modelling enterprise-level
 ("...,Web services, orchestration,...", timers for user behaviour)
 - INET framework models lower network activities

both model parts are combined into a single (OMNeT++) simulation model

- Future work:
 - automated simulation model generation for INET models with appropriate host definitions (currently INET models (especially the hosts) are adjusted manually)
 - user-friendly support for asynchronous communication in ProC/B