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Abstract. Synchronisation and concurrency aspects as well as sharing
of resources are common features of distributed systems. Modelling the
last aspect, especially the scheduling strategy amongst competing jobs,
can be extremely hard using (Coloured) Generalized Stochastic Petri
nets (CGSPNs).

Queueing Petri nets (QPNs) provide additional elements for a conve-
nient specification of such queueing situations. QPNs can be used for
qualitative analysis employing efficient techniques from Petri net theory,
and performance analysis (quantitative analysis) exploiting Markovian
analysis algorithms.

QPN-Tool supports both forms of analysis and offers a convenient graph-
ical interface enabling also unexperienced users to specify and analyse
their system using the QPN model world.

1 Introduction

System analysis 1s often done with respect to qualitative and quantitative as-
pects. E.g. one feature of a fault-tolerant computer is that it will eventually
recover from an error which is a qualitative property of the system. A designer
of such a system 1s surely also interested in the time needed for recovery, a
quantitative property.

Several formalisms have been developed for modelling and analysing quali-
tative properties. Petri nets (PNs) [17,22] belong to these formalism. They have
been proved to be suitable for representation of concurrency and synchronisa-
tion aspects in modern distributed systems. Since PNs do not involve any notion
of time, temporal descriptions have been incorporated to render them suitable
also for quantitative analysis leading to Timed and Stochastic Petri nets. A well-
known representative of this class are Generalized Stochastic Petri nets (GSPNs)
[1,2], which have been used for modelling a variety of systems [18-21].

Apart from concurrency and synchronisation another characteristic of dis-
tributed systems 1s sharing of common resources. Modelling this aspect, espe-
cially the scheduling rule, of a system using (GS)PN elements is quite difficult
and leads to large and complex models [3].
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Fig. 1. GSPN model of a FCFS queue

Consider, e.g., a queue where 2 colours of tokens arrive according to expo-
nentially distributed interarrival times and whose service times are exponentially
distributed. If the scheduling strategy is FCFS, one has to encode the colour of
the token in each position of the queue. Assume that an upper bound for the
number of tokens in the queue is given, e.g. 3, then the GSPN in Fig. 1 would
model the queue accurately. Transitions 1 and {5 model the arrival of a token of
either colour and transitions ¢3 and ¢4 model the service of the token in front of
the queue. The places p;1 and p;2 represent position ¢ of the queue and the place
pso ensures that this position is occupied by at most one token. Since entering a
position is modelled by immediate transitions, a token entering position 3 of the
queue will immediately advance to position 2 and 1, if they are free. This way
of modelling a FCFS queue with GSPN elements works fine if an upper bound
for the number of tokens is known a priori. Performing several experiments with
different initial markings will necessitate a modification of the GSPN model of
the queue for each experiment. If there is no upper bound known beforehand
it is even more difficult. Other service times and scheduling strategies lead to
very complex models. If the service time of a queue is specified by, e.g. a Coxian
distribution and the scheduling strategy is Last Come First Served - Preemptive
Resume, it becomes just about impossible to model such a queue with a GSPN.

A popular modelling world to represent resource sharing are queues [7,15],
where system behaviour can be modelled in a compact way. Receiving the ben-
efits of both modelling worlds GSPNs have been enhanced by the usual descrip-
tions of queues leading to a new model, Queueing Petri nets (QPNs) [3]. Queues
can be directly integrated into Coloured GSPNs (CGSPNs) by associating them
with the places of the net, since a basic property of queues is that customers
entering the queue will eventually leave 1t. QPNs offer a specification paradigm
where concurrency and synchronisation aspects are described by (CGS)PN ele-
ments and resource sharing is modelled by queues giving a structured model of
a system.

Since analysis of modern systems can not be done without proper tool sup-
port, we have developed a program package (QPN-Tool) offering a convenient
graphical user interface and several analysis algorithms for QPN models. Instead
of specifying the transitions of a Coloured GSPN by predicates or functions,



QPN-Tool automatically provides a local unfolding so that also unexperienced
users can specify their QPN models. Furthermore QPN-Tool offers a variety of
PN algorithms and automatically determines quantitative properties of the sys-
tem employing efficient algorithms from PN and Markov theory. In Sect. 2 we
introduce QPNs and the QPN-Tool is described in Sect. 3. A short comparison
with other tools is given in Sect. 4.

2 The QPN world

Queueing Petri Nets (QPNs) [3,4,6] combine Coloured Generalized Stochastic
Petri Nets (CGSPNs) [10] with Queueing Networks (QNs) by hiding stations in
special places of the CGSPN which are called timed places. The structure of a
QPN is determined by a CGSPN with two types of places and transitions:

ordinary place An ordinary place is equivalent to a place in a Coloured Petri
net. Tokens fired onto such a place are immediately available for the corre-
sponding output transitions.

timed place A timed place contains a queue and a depository. A token which
is fired on a timed place is inserted into the queue according to a scheduling
strategy. The scheduling strategy determines which tokens in the queue are
served. Each colour has an individual service time distribution of Coxian
type. After receiving service the token moves to a depository, where it is
available to the place’s output transitions. Figure 2 presents a timed place
and its graphical shorthand notation. A timed place can be regarded as
a short notation of a complex CGSPN subnet, which models a Queueing
Network service station. Scheduling strategies like FCFS, which concern the
order of arrival, require a ranking of token colours to handle bulk arrivals. In
case of a bulk arrival all tokens are separately inserted in succession into the
queue in zero time. A token of the colour with the highest rank is inserted
first.

immediate transition An enabled immediate transition fires according to one
of its colours without any delay in zero time. Any of its colours has a so
called ‘firing frequency’, which allows to compute firing probabilities in case
of concurrently enabled immediate transitions.

timed transition An enabled timed transition fires after a certain delay. This
delay 1s determined by a colour-specific exponential distribution. Firing of
timed transitions has a lower priority than firing of immediate transitions.
Hence no timed transition can fire if an immediate transition is enabled. Like
in GSPNs timed transitions obey a ‘race policy’ to solve conflicts. Firing of
a transition is always an atomic action.

The following example focuses on the illustration of the different elements a
QPN can contain and not on modelling anything of practical relevance.

Ezrample 1. Our model describes a situation such that two types of jobs - they
are classified as light and heavy - require service at a first service station, then
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Fig. 2. Timed place in a QPN and its shorthand notation
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Fig. 3. Example of a QPN



fork into two subjobs which require service from different resources before they
join and then start at the first station again. Thus these jobs are never done.
Figure 3 shows the corresponding QPN with timed places Station_1 and Sta-
tion_2, ordinary places Wait and Done, immediate transitions Fork and Join
and a timed transition Service. It 1s a net with two colours at each place and
transition. The scheduling strategy of Station_1 is processor sharing (PS) and
Station_2 serves jobs according to their arrival (FCFS). For an initial marking 3
tokens of colour ‘light’ and 4 tokens of colour ‘heavy’ are supposed at Station_I,
all other places are empty. Service time distribution in Station_I is Coxian with
2 phases for colour ‘heavy’, exponential for colour ‘light’ which equals a Coxian
distribution with 1 phase. Actual values for rates and probabilities shall not be
of further interest here.

Every QPN describes a stochastic process. A state of this process is determined
by the cartesian product of the state descriptions at all timed places and the
number of tokens at ordinary places with respect to their colours. If the service
time within a timed place is modelled by an appropriate distribution, e.g. Cox-
distribution, Markov-chain based analysis of the QPN is possible.

The state space is partitioned into two types of states similar to GSPNs (cf.

[1]):

vanishing states Firing of an immediate transition has a higher priority than
any other change of state. Thus the stochastic process immediately leaves
a state in which an immediate transition is enabled. If several immediate
transitions are enabled, the one which fires first is determined by the fir-
ing probability. Firing probabilities are deduced from firing frequencies by
relating a firing frequency to the sum of firing frequencies of all enabled
transitions.

tangible states If no immediate transition is enabled, firing of a timed transi-
tion or serving a token within a timed place can cause a change of state. The
time for this change 1s determined by an exponential distribution in case of
firing a timed transition or by the corresponding (exponential stage of the)
service time distribution.

The initial marking of the QPN gives the initial state of 1ts stochastic process
under the assumption that initially all tokens on timed places are situated on
the corresponding depository.

3 QPN-Tool

Specification and analysis of QPNs require appropriate tool support. This section
contains a description of QPN-Tool, which is developed at LS Informatik IV,
University of Dortmund. Furthermore a brief introduction into the qualitative
and quantitative analysis of QPNs is given.

QPN-Tool 1is a prototype which is implemented in C and is executable on
Sun3, Sun4-machines with Sunview or OpenWindows. It contains a graphical



user interface and a variety of analysis algorithms for qualitative and quantitative
analysis of QPNs. Figure 4 describes the modular structure of QPN-Tool. A brief
description of its different modules follows.

‘ graphical user interface ‘

control

[qualitative analysis [quantitative analysis

error handling
Usenum interface

- RG analysis

- D/T property

classification

- P/T invariants
Usenum

- LBFC-Nets

consistency check

Fig. 4. Modular structure of QPN-Tool



3.1 Graphical user interface
The graphical user interface manages the complete user interaction. It supports:

— specification of QPN models,

— specification of analysis tasks, selection of analysis algorithms and required
performance measures,

— presentation of results concerning classification of QPNs and results of qual-
itative and quantitative analysis

— aggregation of detailed information on probably undesired net properties,
e.g. brief description of a firing sequence which leads to a deadlock.

The model description process consists of several main steps.

1. The net’s graphical representation is clearly dominated by the Coloured Petri
net part. This part is specified by creating and positioning places and transi-
tions and establishing their connections by directed arcs. Figure 3 shows the net
corresponding to Example 1.

2. Attributes of places and transitions have to be set. This includes entering
the different colours in a list, choosing the type of transitions and places (timed
or immediate, resp. timed or ordinary) and fixing the number of tokens for the
initial marking. Especially timed places require some additional information:

1. for each colour
(a) its rank according to bulk arrivals
(b) its service time distribution specified by its mean and coefficient of vari-
ance. This service time distribution 1s approximated by a Cox distribu-
tion as described in [8].
2. scheduling strategy
Presently available scheduling strategies are FCFS, LCFS-Pr, PS and Infinite
Server (IS).
3. number of servers
4. performance figures
to be determined in quantitative analysis (cf. Sec. 3.2.4).

Figure 5 displays attributes for Station_1 of example 1.

3. The incidence functions of the Coloured Petri net (cf. [10]) have to be speci-
fied. This is possible in a graphical submodel at each transition. Such a submodel
describes the locally unfolded net regarding a single transition and its input and
output places. A special feature of QPN-Tool fills the submodel automatically
with the transition’s colours and all input and output places including all of
their colours. Thus only arcs and their weights have to be specified manually.
Figure 6 shows the submodel of transition Forkin Fig. 3. A rhomb represents
a coloured place. Colours of a place are represented by circles which are connected
to its corresponding place by lines. Bars display colours of the transition whose
submodel 1s regarded. Obviously transition colour ‘forklight’ takes one ‘light’



: Station_1
Colours & values:
+: Colour: light

Initial value: 3
Ranking: 1
Mean: 0.5
Coefficient of variance:
Colour: heavy
Initial value: 4
Ranking: %
Mean: 15
Coefficient of variance:
Timed place: C YES
Scheduling strategy:  ps
Number of servers: 1
Utilization: Cno
Throughput: No
Population: O YES
Overall colours: O VES
Colours separately: ' YES
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variance: O VES
Distribution: O YES

| Done | | Save | | Abort |
Left button - Move object
Middle button - Create node
Right button - Show operation menu
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Fig. 6. Locally unfolded net at transition Fork



token from place ‘Station_1’ and puts on places ‘ Wait’ and ‘Station_2” one token
on each of the corresponding colour ‘light’. Transition colour ‘fork_heavy does
the same for ‘heavy’ tokens.

Locally unfolding a net has certain advantages:

— It allows a detailed view on single active components with their correspond-
ing environments.

— The Petri-net-type formalism in locally unfoldings and the whole net is ho-
mogeneous.

— Automatic generation of graphical objects in a local unfolding supports a
convenient specification.

— Furthermore generating available colours of input/output places as well as
transition colours automatically avoids inconsistent specifications, because
the set of colours which can be used and should be used are presented com-
pletely. Default positions reflect the common reading direction: input places
and their colours to the left, transition colours in the middle, output places
and their colours to the right.

— If several transitions have identical submodels, it is sufficient to specify just
one. Sharing a submodel is possible as well as copying it.

Since locally unfolding is used within QPN-Tool, it combines a comfortable de-
scription technique with a clear presentation.

3.2 Analysis techniques

Typically analysis goals either refer to qualitative properties, e.g. absence of
deadlocks, liveness or boundedness, or determination of performance measures.
Within QPN-Tool qualitative properties are investigated by a so-called qual-
itative analysis which 1s based on Petri net theory. Performance measures are
computed by analysis of the corresponding Markov-chain, which is called quan-
titative analysis. These analysis techniques are briefly described in the following.

Before qualitative analysis a consistency check is performed and the QPN is
classified as described below.

3.2.1 Consistency check This module checks a QPN for specification in-
consistencies. These could be naming inconsistencies between colour names of a
place or transition and its corresponding colours in a locally unfolded transition.
This type of error can be avoided by automatic generation of net components in
locally unfolded transitions.

Another common error is: although the QPN appears as a connected graph,
it 1s possible that for certain colours a place or transition happens to be a source
or sink. This affects boundedness or liveness of a QPN. Thus it is checked and a
user information is produced.



3.2.2 Classification Classification aims at the embedded CPN. This net is
unfolded to an uncoloured Place/Transition net and classified in terms of: marked
graph, state machine, free choice, extended free choice, simple or extended sim-
ple. This classification supports the choice of a suitable analysis algorithm for
qualitative analysis, because for certain net classes special algorithms are avail-
able.

Qualitative analysis

Check reachability graph: DVES

Check deadlock trap property: DUYES

Check state machine decomposability: SVES
Cover with p-invariants: YVES

Cover with t-invariants: O vES

Calculate p-invariants: VES

Calculate t-invariants: £ vES

Quantitative analysis
Max. statenumber: 10000

Resultfile: analysis.reg
Do quantitative analysis: o Only if
Lifeness: £ YES

Boundedness: ¥ YES
Equal-conflict: £ ND

Station: £ nQ

Fig. 7. Selection of analysis algorithms

3.2.3 Qualitative analysis Figure 7 presents the selection of qualitative
analysis algorithms implemented in QPN-Tool. Apart from ‘classical’ algorithms
like reachability graph analysis and calculation of P- and T-invariants, rather
new algorithms for special net classes are offered. Qualitative analysis within
QPN-Tool aims at liveness and boundedness. If the QPN does not have these
properties, information of the employed algorithm is extracted in order to demon-
strate the reason for a QPN being unbounded or not live. All implemented
qualitative analysis algorithms are based on Petri net theory and ignore timing
aspects as firing delays and frequencies and interpret timed places as ordinary



places. Properties of this ‘untimed’ QPN carry over to the timed QPN under
certain circumstances, if conditions Equal-conflict and Station are satisfied (cf.
[3]). Condition Equal-conflict demands that only transitions of the same kind,
either timed or immediate, are in conflict and condition Station states that the
scheduling strategy has to be of a type like PS or IS. If the QPN 1s live, bounded
and unveils an extended free choice net-structure these conditions are sufficient
for the existence of the steady-state distribution.

The choice of algorithms contain:

reachability graph analysis The algorithm generates the reachability graph
and recognises firing sequences of transitions which lead to unbounded mark-
ings. The reachability graph is checked and it is determined whether the net
is bounded and live. If this is not the case a firing sequence is presented
which demonstrates unboundedness or non-liveness.

computation of P- or T-invariants A system of ’base vectors’ for all posi-
tive P- and T-invariants is computed.

cover of P- or T-invariants The algorithm checks whether the net can be
covered by positive P- or T-invariant. If not, the set of uncovered places,
resp. transitions is presented.

deadlock/trap condition For the class of simple nets it is possible to ensure
liveness by checking the deadlock/trap condition. The algorithm is taken
from [16] and generates the set of minimal deadlocks and checks if any min-
imal deadlock contains a marked trap.

check state-machine-decomposability The algorithm is taken from [13, 14].
It allows to recognise live and bounded Free-Choice nets by checking the net
structure. This is highly efficient compared to other analysis algorithms.

The selection of algorithms allows to exploit the advantages of an algorithm for
the particular case.
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Current QPN has these properties:

Pure
Ordinary

Class of unfolded Petri Net:
Marked Graph

QPN satisfies:
Equal-conflict
Station

Results of qualitative analysis :
- checking reachability graph :
Petri Net is life and bounded!
The reachability graph contains
1 closed strongly connected component(s).
A11 markings are home states.
- checking deadlock trap property :
Petri Net fulfills the condition.
Petri Net is life!
- check SM decomposability :
Petri Net is structurally life and bounded,
initial marking is 1ife.
- cover with t-invariants :
Petri Net is covered by t-invariants!
- cover with p-invariants :
Petri Net is covered by p-invariants!
Petri Net is bounded!

Fig. 8. Result window of classification and qualitative analysis
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3.2.4 Quantitative analysis Quantitative Analysis is pursued with the ob-
jective of assessing performance properties for a QPN. Different performance
measures are offered for

ordinary places: token population
timed places: utilisation, throughput and token population

The calculation of performance measures can result in mean value, variance
and distribution. They can be computed for all colours of a place separately
or aggregated overall colours. They are easily specified by setting appropriate
attributes of the corresponding place, see Fig. 5.

The employed analysis technique maps the specified QPN onto a correspond-
ing Markov chain and subsequently analyses this chain with respect to its steady
state distribution. The QPN’s state space is fully explored causing quantitative
analysis to be restricted to QPNs with a finite state space of acceptable size. For
calculating a state descriptor for FCFS stations an upper bound of the queue
length has to be determined. This is performed automatically during qualitative
analysis by checking the reachability graph or an appropriate P-invariant.

QPN-Tool performs quantitative analysis based on Usenum. This is a tool
developed at LS Informatik IV which is specially designed for numerical analysis
of finite Markov chains, see [9]. Usenum’s duties include three main steps:

1. exploring state space
2. computing steady state distribution
3. calculating performance measures

It 1s able to handle state spaces with more than 100, 000 states and offers different
algorithms for the calculation of the steady state distribution, e.g. Grassmann’s

algorithm, JOR, SOR.

4 Comparison

For recognising limitations of QPN-Tool a quick glance at similar and well-known
existing tools might be helpful: GreatSPN [11] from the Universita di Torino,
Italy, and SPNP [12] from Duke University, Durham, USA.

GreatSPN supports the specification and analysis of GSPNs and DSPNs. It
provides a graphical interface which allows the modelling of only uncoloured nets
but including inhibitor arcs, marking dependent rates and probabilities. Diffi-
culties in describing non-trivial queueing situations and scheduling strategies as
mentioned in Sect. 1 occur. GreatSPN offers an ample variety of algorithms for
qualitative analysis which contains reachability graph analysis, computation of
invariants, deadlocks, and traps, and the (inverse) token game. Net properties
are nicely animated on its graphical representation. For quantitative analysis,
Markov-chain based transient and steady-state analysis is provided as well as
simulation. Output measures have to be textually defined. Compared to Great-
SPN, future versions of QPN-Tool should be able to handle inhibitor arcs,
marking dependent rates and probabilities, and deterministic times. Analysis



algorithms of QPN-Tool do not contain the token game, transient analysis and
simulation yet.

SPNP is based on the analysis of Markov reward models. Its textual inter-
face is closely related to the programming language ’C’, the language SPNP
is implemented in. It allows marking dependent arcs, marking dependent en-
abling functions and general priorities. According to its descriptive power only
reachability-graph based qualitative analysis is performed. Its main focus is on
quantitative analysis based on Markov reward models (transient and steady state
analysis). Output measures are specified by user-defined C-functions supported
by a set of predefined functions. An automated sensitivity analysis is offered
which derives different CTMCs from a fixed state space by variation of an inde-
pendent parameter p for firing rates and probabilities. Compared to QPN-Tool
the modelling process in SPNP tends to be a programming process with a strict
focus on Markov reward process analysis and few qualitative analysis features
as a debugging aid. A variety of qualitative analysis algorithms like in QPN-Tool
or GreatSPN is not given in SPNP. As far as quantitative analysis is concerned,
SPNP differs from QPN-Tool by its transient analysis, automated sensitivity
analysis and its ability to handle general reward specifications.

This comparison is not supposed to be exhaustive or to give a complete
characterisation of GreatSPN and SPNP. We just wanted to demonstrate limits
of QPN-Tool to draw the following conclusions.

5 Conclusions

QPNs are suitable for modelling synchronisation and concurrency situations as
well as sharing of resources which appear in most distributed systems. The great
benefit is that a user is not forced to model queues by ordinary (CGS)PN ele-
ments thus simplifying the description of systems. Timed places can be viewed
as simple parametrisable subnets of a hierarchically specified model.

QPN-Tool offers a convenient graphical user interface. The automatic lo-
cal unfolding of transitions enables also unexperienced users to get quickly ac-
quainted with the QPN model world. The tool also offers many algorithms for
efficient qualitative and quantitative analysis of QPN models.

Future developments are directed to extend this set of analysis algorithms
towards transient analysis, simulation and furthermore to integrate hierarchical
description and analysis techniques as proposed in [5].
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