]
Qverview

Numerical Analysis Approaches for
Large Markov Chains

Experiments, Observations and Some New Results
P. Buchholz

Institut fur Angewandte Informatik, TU Dresden
(partially joint work with Tugrul Dayar, Bilkent University)

= Motivation
= Numerical Analysis Techniques for Sparse Matrices
= Numerical Analysis Techniques for Kronecker Representations

= Empirical Comparison

= Conclusion

Motivation

Goals of this tutorial:

» Anintroduction to Markov chains and their application in
performance/reliability analysis

» An overview of numerical analysis techniques for Markov
chains

» A presentation of compact matrix representations for
Markov chains

» A presentation of numerical analysis techniques for
compact matrix representations

All this has been done in other tutorials (even by myself)

All this is available partially in textbooks/partially in articles

-]
Motivation

Why just another tutorial on the topic?

What is missing and where is some need for information?

* Theoretical results on convergence behavior and
convergence speed of different algorithms are rarely
available ? experimental results are needed

«But very few good papers on experimental
comparisons of algorithms are available

(with some notable exceptions!)

Reasons

» Most implementations of solvers are proprietary

*Very few implementations of solver for compact
matrix representation which go beyond prototypes

» Experimentation is hard work!

Motivation
Current situation

« Many papers are around that include statements about
solvers which only hold for specific examples

The situation is even worth if we consider results about
solvers for compact matrix representations since

» often prototype implementations are used

 often solution times are not given or not compared

« sometimes the used methods are not even explained
appropriately

+ sometimes the solution of systems of an enormous size
is claimed, but only 2 or 3 iterations are performed

 structure is not exploited in solution methods

]
‘Meotivaton

The current situation concerning numerical solution
techniques for Markov chains

* Some people think it is all useless since all realistic
systems are too large

» Some people think that this stuff on compact matrix
representations is not very important since it

— is too complicated
— results in inefficient solvers
— is applicable only to specific models

* Some people believe in methods using compact
representations as a good alternative to solve large
models

Motivation
There is still a need to

* represent experimental results on different solution
techniques

e compare compact matrix representations with sparse
matrix representation

» present basic data structures to realize the different
algorithms

Some results about these aspects are presented in the
tutorial, but there are still open questions since

» experimental results can never be comprehensive

* we use one specific compact matrix representation and
do compare it with all the others that are available

(but available results show that the presented approach is probably
one of the most efficient)

-]
‘Motivaton

My experience in the field:

* Work on numerical solution of Markov chains for nearly
20 years

* Implementation of a large number of solution techniques
in different environments (first in Simula, later in C)

» Availability of a library of solution techniques on sparse
and structured matrices including more than 50 different
methods implemented using a common set of data
structures and basic operations

History of this tutorial

* Joint work with Tugrul Dayar on comparison of methods and
development of new methods

 Short tutorial given at a meeting in Dagstuhl

Overview
* Motivation

e IMAarkov chains

* Numerical Solution Methods for Sparse
Matrices

» Structured Representations of Matrices

* Numerical Solution Methods for Structured
Matrices

» Challenges and Ideas

-]
‘MarkovChains

» Continuous and Discrete Time Markov Chains
(CTMCs/DTMCs) are the basic model type for
probabilistic/stochastic validation/analysis

* Formally
— CTMC/DTMC with finite a state space
S={0,...,n-1}

— generator matrix Q / transition matrix P
Q(x,y) transition rate from state x toy (x ? y)
Q(x,x) =-SQ(xy)

P(x,y) probability of going from statex to y

— initial distribution p,

— possibly set of reward vectorsry,...,Ig

v Chains

Specification of Markov Chains usually at a higher level
(G)SPNs (Extended) QNs Stochastic Automata

Gi/!a: Networks

Modeling tools like HIT
Language \ ' / g

Specifications:

SPAS — Markov Chain —-=—
TSDL (Po, Q, 1)

Usenum or

(Po, P, 1) +various other tools

arkor Cnaine ——.

Usual approach of tool based Markov chain analysis
(graphical, textual or mixed) specification
of model and related measure
in a high-level formalism

1 transformation transformation '

Intermediate Intermediate
level model level result

1 state space treward
generation computation
Markov Chain described Solution vector
by matrix Q (+ vector p,)

Numerical
solutio

Core step in most validation procedures computation of
* the stationary distribution pQ=0 or pP=p (and peT=1.0)
« the transient distribution p, = pyexp(-Qt) or pt) = pOpk

* more complex measures like accumulated values over
some interval of time

Here we consider stationary analysis of Markov chains with
* a finite state space S={0,...,n-1}

« an irreducible matrix Q or an irreducible and aperiodic
matrix P

» Stationary solution vector p exists uniquely
> Initial distribution p, is not required
(or might be chosen to support iterative solution techniques)

e
‘WMarkecChains

For stationary analysis: DTMC <=> CTMC

P =Q/a + | for some a > max|Q(i,i)|

P pP=p<=>pQ=0

P we consider stationary analysis of ergodic CTMCs

(numerical solution of linear equations)

Observe that the equality of CTMCs and DTMCs holds only
at the solution level they differ if structured analysis
techniques are considered!

Main difference:
* Simultaneous events in DTMC

> more non-zero elements
» different structure of the matrix

‘MarkovChans

Stationary solution of a CTMC is nothing more than
solution of a set of linear equations!

We know how to compute it from high school!
What is the problem?

Properties of matrix Q:
* singular M-matrix of rank n-1
e usually non-symmetric
« usually huge n » 10%-107 or above (state space explosion)
« usually very sparse nz/n » 101-102 (nz=non-zeros)

e computation of p is considered as an issue/challenge
in numerical analysis !

]
Markov Chains

Dimension of Q implies that
* Direct solvers are not usable
(due to space and time constraints)
* Sparse storage schemes have to be used for matrices
» Time and space efficient algorithms are important

Rank condition implies
« pQ=0U bpQ=0 forall b
« infinitely many solutions if the above system is solved

* integration of the normalization condition in the matrix is not
recommended!

‘Overview
* Motivation

e Markov chains

LI\\IAumericaI Solution Methods for Sparse]
atrices

Structured Representations of Matrices

Numerical Solution Methods for Structured
Matrices

Challenges and Ideas

umencatsortion T ——

* Numerical Solution Methods for Sparse
Matrices

> An overview of available techniques

» Used data structure and available
methods

» Some experiments with “small” models

‘Numerical Soluton

Numerical Analysis Techniques for CTMCs

Specific Markov
chain solver

Direct Techniques
variants of
aussian eliminatio

Projection
techniques
preconditioner

Basic iterative
techniques

umercat oortion T —

Direct Methods

Gaussian elimination in Some remarks:

different variants: Q is diagonally dominant
? no pivot search necessary

» Method applicable to Q or QT
* Normalization condition
may be included in Q
(as last row)

pivot
element\

or
the last element is set and the
resulting vector is normalized

» Method generates fill-in
(for sparse matrices reallocation of
space becomes necessary)

—1

eliminate

Basic iterative techniques

o xK® =xk1) +xkDQ/a Power method (slow, reliable)
Q=L + U-D (upper/lower triangle, diagonal)

o X® =wxkD (L+U)D1 + (1-w) xk-1 JOR

o x® =wxk-DyD-L)! + (1-w) x&D SOR

» methods are easy to implement

» normalization for JOR/SOR during iteration possible and
recommended

» convergence is usually achieved (at least by settingw<1)
» optimal/good choice of w is an open problem

10

|
‘Numerical Soluton
Projection Methods
Advanced techniques for the solution of linear equations
» often for symmetric matrices
» usually for regular systems

Idea: Approximate exact solution by repeated approximations
taken from subspaces of smaller dimensions

Basic technique for non-symmetric systems: GMRES
» exact solution after at most n iterations
» all previous vectors have to be stored

Since we cannot store O(n)-vectors, we need
projection-methods requiring less vectors (shorter recurrences)

Techniques that have been applied for CTMC-analysis

» restarted GMRES (r (»10-30) additional vectors)
» CGS (5 additional vectors)
» TFQMR (6 additional vectors)
» BICGStab (5 additional vectors)
Remarks:

» convergence of projection methods often irregular

> all methods may break down

» implementation is more complex (templates are available)
* beware of normalization in CGS, TFQMR, BiCGStab (!)
* how to test for zero (?)

» if used in symbolic techniques, storage for additional vectors
is a major disadvantage

11

e
‘Numerical Soluton

Preconditioning
If convergence of an iterative technique is slow the technique
might be applied to a modified system with the same solution
where convergence is faster
Solve pM-1Q=0 or pQM-1=0 for M»Q
» usually M-1is not built, instead xM =y is solved

P find M»Q such that xM =y can be efficiently solved

and M is easy to compute and store

»projection methods are recommended to be used in
combination with preconditioners

» SOR and JOR can be interpreted as preconditioned Power
methods

menc uton

Common preconditioners incomplete LU-factorizations:
M=LU” QsuchthatxM=y b xLU=y b zU=yandxL =z
two back substitutions with triangular matrices
* [LUO: Perform LU-factorization using the non-zero
structure of Q only
+ no need to reallocate space b usually very efficient

— for Markov chains not as effective as for other
applications

* ILUTh: Perform LU-factorization per row and store only
element larger than threshold th

+ choice of th determines approximation

— reallocation of space becomes necessary b often
inefficient

— good/bad choice of th a-priori unknown

12

-]
V
Specific techniques for Markov chain analysis
Technigues exploit structure of the matrix Q

e GTHe-algorithm for direct solution

> Variant of Gaussian elimination

> Exploitation of the fact that the sum of non-diagonal elements
equals the absolute value of the diagonal element b
implementation without subtraction

+ Algorithm is more stable than Gaussian elimination
— Algorithm requires access to rows and columns
(problems with sparse storage schemes)

» Matrix analytic/geometric techniques
» Exploitation of a block-repetitive structure of Q
+ Efficient algorithms for very specific problems
- not general purpose

Both approaches will not be considered here!

menc uton

Most CTMCs have a lot of structure introduced by the
high level specification:

2 Q00 - QON+T &
QIN+10] - QIN+1LN+1]5
KMS

* Block Gauss Seidel iterations
solve p®M[X]Q[X,Y]=b&-D[X] for every block in each iteration
* Introduce aggregation/disaggregation

13

umercat oomton —

2 Q00 - QON=+ ¢
Aggregated matrix Q =g : : -
of order NxN gQ(NH,O) Q(N+1N+])§
where Q(K,L) = x[K]Q[K, L]e"

and x is the current guess of the solution

1.

2. Solve §Q=0

3. Disaggregation X[K]=(¥(K)/(x[K]e"))x[K]

Aggregation/Disaggregation (A/D)-steps can be combined
with many iterative solution techniques!

Exploitation of repeated aggregation/disaggregation without
a block structure of Q

Multi-Level Approach (Horton-Leutenegger 94)
roject i
%} gro;ect: - @
_ 4
)
redirect redirect

iterate iterate iterate

14

|
Numerical Solution

Implementation issues of the multi-level method

» Aggregation is done without using structuring information

» All aggregated matrices have to be filled in every cycle

* Number of iterations per level and number of states to be
aggregated are parameters of the method

» Usually SOR iterations are applied

Implementation issues of KMS and BSOR

» Aggregation is done with respect to the model structure
» Only one aggregated matrix needs to be filled in a cycle

 If blocks are small enough, LU-factorization is applied at
a block level (only one factorization)

otherwise iterative techniques are applied

%
General questions
» What is the most efficient method for a given model?

» Are projection methods generally superior to other methods?

» What are the optimal parameters for a method?

General answers and theoretical results are not available
» experimental work is necessary to give at least guidelines

But

» experiments have to be done and interpreted with much care
because the performance of the methods depends on
implementation, compiler, compiler options, architecture, ...

15

]
mencal uton

Requirements for meaningful experiments
* Methods have to be implemented in an efficient way
(MATLAB does not work)
» Implementations have to be comparable
(identical data structures, identical basic functions,
no prototype implementation of some methods
compared with optimized implementation of others)
» Experiments have to be made on identical machines
under identical load conditions
» Experiments have to consider relevant models resulting
in matrices with different properties

» Experiments have to compute results with a reasonable
accuracy

menc uton

This implies that for successful experimentation
» A set of solution methods has to be available

* Alarge number of experiments has to be performed
(number of methods * number of models * number of replications)

» Experience shows that for nearly every method a model
exists such that the method behaves good

» Even if all this is done we can only get some hints but no
final answers about the quality of different methods

16

-]
Numerical solution

* Numerical Solution Methods for Sparse
Matrices

» An overview of available techniques

Used data structure and available
__methods

» Some experiments with “small” models

‘Numerical Soluton

Implementations issues

Data structures to store Q
» sparse matrix data-structures (O(n))
» symbolic representations (<<O(n))
» Kronecker-based
* hierarchical Kronecker structures
» matrix diagrams
* MTBDDs

Data structures to store vectors

» arrays (O(n))

» symbolic representation have not been used
successfully yet

17

umencatoomtone ——

The (never ending discussion about) the programming
language

* Most numerical programs are written in Fortran

* In Computer Science Fortran is rarely considered as an
appropriate language

« Modern languages like Java are not really usable for large
computation

» Our compromise is an implementationin C
> Exploitation of pointer and dynamic memory
allocation/deallocation
» Definition of a common set of basic data structures
with the required operation
» Use of a few basic functions from Netlib

Sparse matrix structure

diagonals—roewin .
g colind

ROO) [nz0 b L‘ Val

T \g\u,h‘f)

RLL) |1 M

QL) Flexible data structure
» Access to the elements per row

Q * Implementation of a large number
of basic functions using the data
structure

* Implementation of direct methods
R(n-1,nj1) requires reallocations per row

18

]
Numerical Solution

Based on the matrix structure and the basic routines
numerical solution methods have been implemented

* File interface for sparse matrices

* Model specification using colored GSPNs (APNN-
toolbox) or textual interface (Usenum)

Available methods

» Direct method LU-Decomposition
* |terative methods Power, JOR, SOR (+ A/D steps)

» Projection methods Arnoldi, GMRES, DQGMRES,
BiCGStab, TFQMR (+ ILUO, ILUTh preconditioner,
partially + A/D steps)

» Specifc methods for CTMCs: Multi level, IAD

Nurmerical solution

* Numerical Solution Methods for Sparse
Matrices

» An overview of available techniques

» Used data structure and available
methods

> Some experiments with “small” models]

19

]
mencal uton

Some remarks about experimental results
They can never be comprehensive since
» we consider only a few models

» we consider only some variants of the methods

(e.g., convergence of some methods depends on the ordering of
states and we consider only one ordering, some methods have
various parameters to tune etc.)

e Wwe measure times on one architecture

But experimental results give some hints about the quality
of different approaches!

menc uton

Small models:

8 different models with

» between 1,764 and 91,125 states

» between 8,648 and 795,824 non-zeros

» different characteristics
» 3 models for communication systems (MSMQ, Courier, cqueues)
» 2 models for production/logistic systems (huck, kanban)
» 2 models with failures/repairs (availability, performability)

» 2 models with NCD-property (ncd, performability)
» 1 model with loose coupling due to small prob. (cqueues)

20

]
Numerical Solution

14 different solution methods:

>
>
>

JOR and SOR with w=1.0 or 0.9

SOR with A/D steps

KMS aggregation/disaggregation algorithm
(Stewart et al1984)

ML-method with aggregation of 5 states and 5 iterations per level
(Horton-Leutenegger 1994)

GMRES with r=20 with/without ILUO or ILUTh(0.1max_diag)
(Saad-Schultz1986)

BiCGStab with/without ILUO or ILUTh(0.1max_diag)
(van der Vorst 1992)

TFQMR with/without ILUO or ILUTh(0.1max_diag)
(Freund 1993)

menc uton

Some information about the experiments

PC with 1.70 GHz Pentium, 768 MB main memory under
Suse Linux 8.1

Programs in C complied with gcc version 3.2 with
parameter —O3

Iterations are stopped if the maximum norm of the
residual vector becomes smaller than 10-8 or if 1000
seconds of CPU elapsed

(the fastest methods requires in all cases less than 10.1 seconds)
For each model methods are ranked first, second, third
according to CPU-time and the mean rank of the
methods are given

21

]
Numerical Solution

» Comparison of the methods concerning their rank
12+

mESOR

ESOR A/D

mEML
OBiCGStab
ETFQMR+ILUO
WKMS
EBiCGStab+ILUO
OJOR
EGMRES+ILUO
OBiCGStab+ILUTh
ETFQMR+ILUTh
OGMRES
ETFQMR
EGMRES+ILUTh

10+

Mean Position

menc uton

Some explanations and observations

* SOR variants (SOR, ML, SOR A/D) are reliable
(convergence at least after setting w=0.9)

» Projection methods are less reliable

— If used without preconditioners often not faster than
SOR

— ILUO precondioners are very effective on some
examples, but have a negative effect on others

(for the NCD examples)

— ILUTh preconditioners reduce the number of
iterations, but computation of the precondtioners
takes too long

22

_-——
Numerical Solution
» Solution time for the non-NCD examples

Solution time

1001
801 ETFQMR+ILUO
EBiCGSTab+ILUO
601 EML
ESOR
40 ESOR A/D
WBiCGStab
201 mJOR
OKMS
0.

Numerical Solution
» Solution time for the NCD examples

Solution time

5001
4001
E SOR A/D
3001 EKMS
EML
2001 OBiCGStab
@ SOR
1001 mEJOR
0.

23

-]
yaon 0S

Limits of the solution approach

* Memory required for the representation of the matrix and
the vectors
(especially for projection methods)

» Solution time due to an extensive number of iterations

» Exploitation of structure for the solution is restricted to a
few methods and to a block structure of the generator
matrix

(but all matrices result from highly structured
descriptions and contain much more structure)

Overview
* Motivation

 Markov chains

* Numerical Solution Methods for Sparse
Matrices

e (Striictiirad Dnlnrncnnfnfinnc nf Matriceg

* Numerical Solution Methods for Structured
Matrices

» Challenges and Ideas

24

-]
Numerical solution

 Structured representations of matrices

> The basic idea of representing
structured matrices

» Extensions to avoid unreachable states

» Data structures

» Realization of vector matrix products

» What about the vector?

e resentaunons

For large CTMCs sparse representations of Q require too
much space

» Choose some symbolic representation for Q

» Perform vector matrix product computations with the
symbolic representations

» Several symbolic representations are available most rely
on similar ideas

» Models are composed of interacting components

» Represent components by matrices

» Compose small component matrices to build the large generator
Kronecker operations are used to compose the small matrices

25

e

Kronecker-product
Al R"™ Bl R¢!

AL m) B g

A(n, m)><Bé

B 0 - 06
ALm¥ e € TR
- QO LT e

\ 0] 1002 0102
composition

X Yo oprdsedion... XY

26

Wc v resentation
@ 1o§ B 205 1020 < E012
01 e 11C c 1011

02 1002 010

g @b g@@oo 29000106 29000@Dy
=5%- 5 cc 0@k goooéoo@ ¢c0000G
T &0c0y 9000000 ¢0c0000%

~ ¢000000+ ¢b0000O=
@106 = ¢i00000° S0b0c00*
(‘:0@ :

éooooooﬂa \‘§00b000§

e resentaunons

» Set of J automata, each automaton has finite state space

* Communication between automata by synchronized
transitions TS

Automaton i has state space: S ={0,.. n(‘)-l}

l XE(')

Automaton i is represented by R =
Global descriptor matrix

J . | .
R= é i=1| 10 A (éﬂT(i)\TS Et())A Iua) i

~ J . N
tiTsI toi:ll @ A Et()A lu(‘)

g7t

O

27

e resentanons

Advantage of the representation

o] f .
space TXQ ,(N")* instead of (C)len('))z
Butusualy ST PS =~ les"
Often |PS|>>|S]|
(1% or less of the potential states are reachble)
Examples:

» Closed QNs
* Exclusive access to resources

Any method dealing with PS instead of S
will not work for most models!

e resentaunons

 Structured representations of matrices

» The basic idea of representing
structured matrices

Extensions to avoid unreachable states

» Data structures

» Realization of vector matrix products
» What about the vector?

28

W

Central problem we have to address: SI PS
> representation S=" S0 is compact,

but may contain a large number of unreachable states
» enumeration of RS contains no unreachable states,

but may require a lot of space

Idea to avoid state space explosion
(i.e. to avoid enumeration of all states/transitions)

> representation of sets of states as a union of cross-
products of small sets

> represent the matrix as a block-structured matrix where

each block is described as a sum of Kronecker products of
small matrices

Two automata
state spaces S = S@=
partioned in subsets

Reachable combinations
¢ bedbdbd b

Unreachable combinations

{rme{ Wemwe{m Bty B

29

Interpretation as a hierarchical description:
Macro state space including transitions

W

Correspondence
to micro states

Detailed state space

{ bed I}E{I b

Generation of the hierarchical representation

* From the model specification
E.g., in closed queueing networks by considering subnet
population, in SPNs by computing regions, ...
* From the description as an automaton by an algorithm
computation of the coarsest representation for a given
decomposition in automata

» Both approaches have been implemented and work
very well in practice

30

‘Structured Representations 0000
e Qo0 - QOm-1 §
Matrix representation: Q :g : : -
&QIm-10] - Qm-1m- 1
where
——7_ 9 L (Ve e U S
Qx.yl=a |t(élEP)[X(I),y(I)]+d(X,Y) Jf’i~1D§”[X(I),y(l)])
e m number otf macro states , n® number of states in component j
* n number of reachable states often in O((N),lln(")

. . A A
* memory requirements sparse representation of Q usually O(qun)

J .
«memory requirements Kronecker representation of Q usually O(é_ J.zln(‘))

e resentaunons

Alternative methods to represent state space and
matrices compositionally

» Computation of a mapping between PS and S
+ General approach possible for every structure

— Huge overhead to realize operations on vectors and
matrices

* Matrix diagrams presenting matrices in a graph structure
» Comparison between hierarchical structures and
matrix diagrams is still missing, but available results
suggest
+ Matrix diagrams seem to be slightly more general
- Hierarchical representations seem to allow slightly
more efficient realizations of operations

31

]
e resentanons

 Structured representations of matrices

» The basic idea of representing
structured matrices

» Extensions to avoid unreachable states

> Data structures

» Realization of vector matrix products

» What about the vector?

fuc resentauons
Data Structures to represent hierarchical matrices

For each component, each macro state (pair) and

* each synchronized transition: one sparse matrix

« all local transitions: one sparse matrix

Size of the matrices equals the number of detailed states in
this macro state

One row of the global generator in sparse format

Column index ;{‘ ©
Operation A A
Rate 1p [
Matrices
~ » Listof sparse matrices one per non-identity matrix

» List of sparse matrices one per non-zero matrix

32

]
cu resentauons

Memory requirements

non-zeros Q @ number of states
non-zeros Kronecker

1.00E+10
1.00E+09 1
1.00E+08 1
1.00E+07 1
1.00E+06 1
1.00E+05 1
1.00E+04 1
1.00E+03 T
1.00E+02 1
1.00E+01
1.00E+00 -

Pusher Courier MSMQ Kanban

e resentaunons

 Structured representations of matrices

» The basic idea of representing
structured matrices

» Extensions to avoid unreachable states

» Data structures

> Realization of vector matrix products

» What about the vector?

33

fuc resentauons
Basic operation of most iterative techniques:
Computation of vector matrix products

* In the hierarchical representation this is done at a block
level

» Each product subvector-submatrix can be realized by
repeated computations of the form:

xAE" =x L AEDAL, 2
i=1 i=1 (%]

Required is one procedure to implement:

d
»>y=xA E® for sparse matrices
i=1

e resentauons

How to compute: y =X >€AiJ=lE(i)
» Kronecker product as sequence of products

* nice special i=J: block diagonal structure, n/n®
repetitions

t

shuffle permutation is appli%d to treatall cases as
specialcase A, E/) =0 P, (u)(l o A EM) P

i=1

o J - ~] .
« computational effort (aiqn")Xoi:lnz('))

A [F (j))
for sparse matrices Oizl(nz O,.n

34

e resentauons

Multiplication of a vector with a Kronecker product of two 3X3 matrices

x(AAB)=x(AAL)(I,AB)

Rl 1= 1 % Il Rl Rl
22 |] "AP] 2 | *BP |21
15 N X o2t] a1 \ < o2] o1 |
AN/ ap N/ 12 |
2,2 2,2 2,2 2,2 * 2,2
A= b W] PP
2 OB sap 2N 15 |
3,2 2,3 2,3 3,2 * 2,3
b Bkl PP

shuffle multiply shuffle multiply
O(nyn,) O(ny?ny) O(nyny) O(nyny?)

[Dyesden 0 S

c

]
e resentaunons

 Structured representations of matrices

» The basic idea of representing
structured matrices

» Extensions to avoid unreachable states
» Data structures

» Realization of vector matrix products

> What about the vector?

35

e resentanons

Vectors become the memory bottleneck

Several compact representations of vectors have been tried
MDBBs, ADDs, PDGs ...

But a lot of problems arise since

* The representation does not remain compact

* Numerical inaccuracies occur

» Operations become extremely slow
(slow down by 2 or more orders of magnitude!)

To the best of my knowledge no compact
representation of vectors exist which outperforms flat
representations on alarger set of models or is at least
applicable to a larger set of models!

Qverview

* Motivation
Markov chains

Numerical Solution Methods for Sparse
Matrices

e INumerical Solution Methods for Structured

Aatrices

» Challenges and Ideas

36

Tuc ution
 Numerical Solution Methods for Structured
Matrices
> Structured Realizations of known
Techniques

» New Solution Approaches
» Results for the Small Examples

» Some Larger Examples

> Where are we now

‘Structured Solwton

» Vector matrix products are available such that every
method based on this operation can be easily realized

Power, JOR, GMRES, BiCGStab, TFQMR, ...

» Realization of SOR provides problems since it is not
based on simple vector matrix products

Proposed solutions

— Computation of matrix elements for multiplication
(Buchholz,Ciardo,Donatelli,Kemper Informs J. on Comp. 2000)
— Exploitation of matrix splittings
(Dayar, Uysal EJOR 1999)

Both solution are comparable and require additional
effort, we use the second version in the experiments

37

e
‘Structured Soluvon

What cannot be done with the compact representation?

Realization of any kind of matrix transformation that
destroys the structure!

» Direct solution methods are not applicable
» Preconditioners of the ILU-type are not applicable

* The standard multi-level and aggregation/Disaggregation
methods are not immediately applicable

(but for these approaches new and more advanced approaches are
available 1)

Stfuctured Solutor

> Price for the compact matrix representation in solution time
(measured as the relation between structured and sparse matrix
representation for the small example models)

BiCGStab JOR SOR

c

38

]
e uton

For methods which exploit vector matrix products
(like JOR, BiCGStab)

 The mean slow down is less than 2

* In some lucky cases a small speedup is observed

(more lucky cases occur for discrete time models with simultaneous
events)

* Results the maximum slow down (about 5) from the
availability model with local failures and synchronized
repairs among all processes (worst case example)

— all other models result in slow downs of less than 3

For SOR is the effort per iteration increased by a factor of
about 5.5

(for sparse matrices no slow down occurs if SOR is used)

fuc ution
Worst case example model

N/)

7/,

i\
‘g8
\/

XY
=20
\\/
Q

\

39

]
e uton

Sometimes much larger slow downs are reported in the
literature, what are the reasons?

» Use of a wrong representation
— including non reachable states
— causing a lot of overhead

* Inefficient implementation of structured techniques
— approaches are hard to implement (many pointers, ...)

— implementation is done as student work whereas
sparse matrix implementations are highly optimized

e uton

Since sparse matrix and Kronecker representations
describe different ways to compute vector matrix
products, numerical results will not be identical!

Our observations:
» No approach yields more accurate results in general

* In all examples the number of iterations for JOR, SOR
and GMRES are identical

» Differences in the number of iterations occur in BiCGStab
and TFQMR

— Usually the differences are small,

— but in a few examples significantly different numbers
of iterations have been observed

40

]
e uton

Residuals of BiCGStab for the performability model:

[—e—BicGStab PC = StBiCGStab PC - BiCGStah Sun —8=StBiCGStab Sun |

1.00E+00 T T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
1.00E-01
1.00E-02
1.00E-03 4——
IJ’_J_1<v | E—
1.00E-04

1.00E-05 \/‘\'\\
1.00E-06 —

1.00E-07 \

1.00E-08

e ution
Effect of compiler optimization:

1.2
1_
0.8 - HJOR
0.6 B StJOR
®WSOR
0.4 - EIStSOR
0.2 -
(=

41

Tuc ution
 Numerical Solution Methods for Structured
Matrices

» Structured Realizations of known
Techniques

» New Solution Approaches

» Results for the Small Examples

» Some Larger Examples

> Where are we now

e uton

Can we gain from the model structure also for the
solution?

* Much less work for solution has been done than for
representation

« Structure of the model often corresponds to a
behaviorially oriented decomposition and can be
exploited for solution

* Most solvers for CTMCs exploit some structure

(e.g., A/D method, ML, ..)

+ First experience with newly developed solvers for

structured representations are very encouraging

There is much potential for the development of efficient
numerical solution algorithms for compact matrix
representations

42

]
e uton

Preconditioning techniques for structured representations
(Preconditioner has to be represented in a compact form)
» Separable preconditioner resulting from the inversion of
component matrices (Buchholz NSMC 99)
— Approximation of the Neumann expansion of the matrix

— Compact representation
— Solution effort is reduced only for some examples

» Nearest Kronecker product preconditioner
(Stewart/Langville J. on Num. Lin. Alg. 02)

— Approximation of Q by a single Kronecker product which is easy to invert

— Only propritary implementation for a restricted class of models available

— First results show improved solution times, but results for large models
are missing

e uton

* BSOR for structured matrices
(Buchholz/Dayar NSMC 03, for details attend the talk)

— Hierarchical representations naturally define blocks, additional
blocks due to Kronecker structure

— Solution of blocks by LU- or Shur-decomposition
— Efficient solver for a large class of models

* BSOR as preconditioner for projection methods
(Buchholz/Dayar submitted 03)

— BSOR is applied to the residual vector of projection methods
yielding a new preconditioner

— Efficient solver for a large class of models

c

43

]
e uton

» Aggregation/Disaggregation for structured
representations
(Buchholz EJOR 1999, APNUM 1999)

— Aggregation/Disaggregation steps at a block level as in methods
for sparse matrices
— Additional aggregation at a component level
* Projection of the current solution vector for a single
component
< Solution of an aggregated system and correction of the
current overall solution
« Combination with standard iterative solver (JOR, SOR, ..)

— Efficient implementation due to exploitation of Kronecker
structure

— Improved solution times if components are loosely coupled

e uton

» Multi-level solution for structured systems
(Buchholz SIGMAX 99, Buchholz/Dayar submitted 03)
— Method uses ideas from multigrid methods

— Generation of aggregated system with respect to the model
structure by aggregation of components

— lIteration at different levels
— Multiplicative projection and correction functions

— Very efficient implementation due to exploitation of Kronecker
structure

— Aggregated matrix results from detailed matrix after removing
some matrices in the Kronecker representation
(no explicit generation or storage of aggregated system)
— Extremely efficient solvers for most models
< scalable to huge systems

c

44

Shematic description of multi-level for one macro state

Natural integration in Kronecker representation

L@ o ()0 2 R =08
itergy ,aAE : . 2 Ok
g itio ' @ |ter§xD,T?.Tﬁ E. 2
D®j,® A /
< DA i1_| A
iteaex ,éOa“’AE“)g L@ oo g ()0
ré ° i A is ' g ItergxnygaTQa I"IADE‘ E

D® in-1® A\ /;_' i1 A
|

w'vfxoyé Oa’ "2

t
tTilA (%}

* Examples shows V-cycle
other cycles from
multigrid can as well
be realized
« Different realizations
« different iteration
methods
« different stopping
criteria
« Efficient implementation
requires some effort

45

Tuc ution
 Numerical Solution Methods for Structured
Matrices

» Structured Realizations of known
Techniques

» New Solution Approaches

» Results for the Small Examples

» Some Larger Examples

> Where are we now

‘Structured Solution
Empirical comparison using 16 different structured solution
methods:

» JOR and SOR

» BSOR

» BiCGStab without/with BSOR- or separable-precond.

» TFQMR with and without BSOR- or separable-precond.

» CGS

» GMRES

» Multi-Level with JOR or SOR and fixed number of iterations

» Multi-level with SOR and dynamic number of iterations

46

- |
Numerical Solution
» Comparison of the methods concerning their rank
MLSOR
161 BiCGStab+BSOR
14+ BSOR
@ TFQMR+BSOR
121 MLJOR
10- MLSOR dyn
@ SOR
@ SJOR
BiCGStab
OBiCGStab+Pre
SJOR+A/D
O TFQMR+Pre
®JOR
ECGS
TFQMR
GMRES

Mean Position

Numerical Solution
» Solution time for the non-NCD examples

Solution time

250+ TFQMR+BSOR
EBSOR
200+ MLSOR
D BiCGStab+BSOR
150+ MLSOR dyn
TFQMR+Pre
100+ BiCGStab
OMLJOR
50 SOR
O BiCGStab+Pre
0- SJOR
OJOR

c

47

_-——
Numerical Solution
» Solution time for the NCD examples

Solution time

500+
MLSOR
4001 MLJOR
300- BiCGStab+BSOR
OMLSOR dyn
200_ BSOR
BiCGStab+Pre
100 SOR
OSJOR
0- JOR

e

» Comparison of the 5 fastest methods from both sides

SOR+A/D

ML

SOR

O StMLSOR

StBSOR
StTFQMR+BSOR
StBiCGStab+BSOR
OTFQMR+ILUO
BiCGStab
OStMLJOR

O P N W b O O N

Mean Position

48

e uton

Observations from medium sized models

Methods on sparse matrices are slightly faster than
structured methods on model with about 10° states

Difference between fast methods on sparse matrices and
advanced structured methods is very small

— Matrix generation has not been considered and is much faster for
structured representations

— Advanced structured models can be improved

(e.g., other cycles in ML-type methods, ...)
Real advantage for structured methods when model size
increases

e uton

Numerical Solution Methods for Structured
Matrices

> Structured Realizations of known
Techniques

» New Solution Approaches

» Results for the Small Examples

» Some Larger Examples

> Where are we now

49

e
‘Structured Solutons

Larger models:

10 different models with

» between 358,560 and 2,945,880 states

» between 1,871,004 and 26,172,344 transitions

Hierarchical Kronecker representation with
> between 1 and 1774 macro states/blocks
> between 370 and 11,480 non-zero elements

* 4 models for communication systems/protocols
(msmql/2, courierl/2)
* 4 models from the manufacturing area (kanbanl1/2/3, fms)
* 1 model from computer system modeling (ncd,gh-realcontrol)
« 2 models with ncd property (ncd, kanban3)

e uton

Experiment conditions
* lIterations are stopped if

— The maximum norm of the residual vector is less than
108 or

— 7000 seconds of CPU time elapsed

* Methods are ranked for each example and the mean rank
for each method is determined

50

— —
‘Structured Soluton

Empirical comparison using 14 different structured solution
methods:

» JOR, SJOR, SOR and SJOR A/D

» BSOR

» BIiCGStab without/with BSOR- or separable-precond.

» TFQMR with and without BSOR- or separable-precond.

» CGS

» Multi-Level with JOR or SOR and fixed number of iterations
» Multi-level with SOR and dynamic number of iterations

‘Stuctured Soluton
» Comparison of the methods concerning their rank

141 MLSOR
124 MLJOR
MLSOR dyn
101 I BiCGStab+BSOR
TFQMR+BSOR
8 BiCGStab
mSOR
6 OBSOR
) TFQMR+Pre
44 OSJOR AD
2
0

SJOR
OBiCGStab+Pre
CGS

TFQMR

Mean Position

]
e uton

Some observations
* Advanced methods outperform standard methods clearly
e ML-methods scale better than BSOR
MLSOR is the clear winner
— Solution of all models with MLSOR in at most 12 minutes
* No difference between NCD and non-NCD examples

* Projection methods without BSOR-preconditioner show
convergence problems on several examples

e uton

 Numerical Solution Methods for Structured
Matrices

> Structured Realizations of known
Techniques

» New Solution Approaches
» Results for the Small Examples

» Some Larger Examples

> Where are we now

52

T T

» Compact matrix representations exist for a large class of
models

» Problem of unreachable states in earlier approaches
has been solved

»Reinvention of a Kronecker representation for
model class xyz without an implementation is not
necessary and useless!

» Matrix generation is extremely efficient and huge
transition system can be generated and represented
on contemporary PCs

»parallel state space generation is not necessary!

» Efficient implementations of vector matrix products are
possible, but require a sophisticated design and
implementation of data structures and algorithms

» Model structure can be used to speed up solutions

» Although no black box method exist in general, multilevel
methods seem to be a good candidates for reliable and
efficient solvers

> But still a lot of work remains to be done in this area

» On current PCs models with up to 107 states usually can
be solved in a reasonable time

» Out-of-core methods with sparse matrix representation
are usually not competitive

» Out-of-core methods with compact matrix
representations and vectors partially stored on fast
disks could be candidates to analyze larger models

53

]
e uton

Structured representations have been considered only for
iterative numerical analysis, but they are useful for many
other applications like

» Model reduction based on equivalence of components
» Approximate analysis of models using fixed point
approaches

» Hybrid analysis by combination of numerical analysis and
discrete event simulation

» Stochastic model checking
» Functional analysis

Overview
* Motivation

 Markov chains

* Numerical Solution Methods for Sparse
Matrices

» Structured Representations of Matrices

* Numerical Solution Methods for Structured
Matrices

e (Challenaoes and ldeas

54

-]
%
Research goals:

» Optimal/good parametrization of Kronecker-based
solution techniques

» Other solution techniques exploiting the structure

» Empirical comparison of different techniques, different
data structures, different implementations

» Reliable and fast implementations of numerical
techniques for CTMCs

(like Templates, netlib for linear algebra)

» Parallelization of the techniques

» Provable good approximation techniques

» Compact representations for the solution/iteration vector
(if they exist at all)

55

