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MotivationMotivationMotivation

Goals of this tutorial:
• An introduction to Markov chains and their application in 

performance/reliability analysis
• An overview of numerical analysis techniques for Markov 

chains
• A presentation of compact matrix representations for 

Markov chains
• A presentation of numerical analysis techniques for 

compact matrix representations

All this has been done in other tutorials (even by myself)All this has been done in other tutorials (even by myself)

All this is available partially in textbooks/partially in articlAll this is available partially in textbooks/partially in articleses
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MotivationMotivationMotivation

Why just another tutorial on the topic?
What is missing and where is some need for information??

• Theoretical results on convergence behavior and 
convergence speed of different algorithms are rarely 
available ? experimental results are needed

• But very few good papers on experimental 
comparisons of algorithms are available 

(with some notable exceptions!)
Reasons
• Most implementations of solvers are proprietary
• Very few implementations of solver for compact       

matrix representation which go beyond prototypes
•• Experimentation is hard work!Experimentation is hard work!
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MotivationMotivationMotivation

Current situation
• Many papers are around that include statements about 

solvers which only hold for specific examples

The situation is even worth if we consider results about 
solvers for compact matrix representations since

• often prototype implementations are used
• often solution times are not given or not compared
• sometimes the used methods are not even explained 

appropriately
• sometimes the solution of systems of an enormous size 

is claimed, but only 2 or 3 iterations are performed
• structure is not exploited in solution methods
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MotivationMotivationMotivation

The current situation concerning numerical solution 
techniques for Markov chains

• Some people think it is all useless since all realistic 
systems are too large 

• Some people think that this stuff on compact matrix 
representations is not very important since it
– is too complicated
– results in inefficient solvers
– is applicable only to specific models

• Some people believe in methods using compact 
representations as a good alternative to solve large 
models
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MotivationMotivationMotivation
There is still a need to
• represent experimental results on different solution 

techniques
• compare compact matrix representations with sparse 

matrix representation
• present basic data structures to realize the different 

algorithms
Some results about these aspects are presented in the 

tutorial, but there are still open questions since 
• experimental results can never be comprehensive
• we use one specific compact matrix representation and 

do compare it with all the others that are available
(but available results show that the presented approach is probably 

one of the most efficient) 
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MotivationMotivationMotivation
My experience in the field:
• Work on numerical solution of Markov chains for nearly 

20 years
• Implementation of a large number of solution techniques 

in different environments (first in Simula , later in C)
• Availability of a library of solution techniques on sparse 

and structured matrices including more than 50 different 
methods implemented using a common set of data 
structures and basic operations

History of this tutorial
• Joint work with Tugrul Dayar on comparison of methods and 

development of new methods
• Short tutorial given at a meeting in Dagstuhl
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OverviewOverviewOverview

• Motivation
• Markov chains
• Numerical Solution Methods for Sparse 

Matrices
• Structured Representations of Matrices
• Numerical Solution Methods for Structured 

Matrices
• Challenges and Ideas
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MarkovMarkovMarkov ChainsChainsChains

• Continuous and Discrete Time Markov Chains 
(CTMCs/DTMCs) are the basic model type for 
probabilistic/stochastic validation/analysis

• Formally 
– CTMC/DTMC with finite a state space 

S={0,...,n-1}
– generator matrix Q / transition matrix P

Q(x,y) transition rate from state x to y (x ? y)
Q(x,x) = -Σ Q(x,y)
P(x,y) probability of going from state x to y

– initial distribution p0

– possibly set of reward vectors r1,…,rR
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Markov ChainsMarkov ChainsMarkov Chains

Specification of Markov Chains usually at a higher levelSpecification of Markov Chains usually at a higher level
((G)SPNsG)SPNs

CPUCPU

DiskDisk

(Extended) (Extended) QNsQNs Stochastic AutomataStochastic Automata
NetworksNetworks

Language Language 
Specifications:Specifications:
SPAsSPAs
TSDLTSDL
UsenumUsenum
……

Modeling tools like HITModeling tools like HIT

+various other tools+various other tools

Markov ChainMarkov Chain
((pp00, , Q, rQ, r))

oror
((pp00, , P, rP, r))
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Markov ChainsMarkov ChainsMarkov Chains

Usual approach of tool based Markov chain analysisUsual approach of tool based Markov chain analysis
(graphical, textual or mixed) specification (graphical, textual or mixed) specification 

of model and related of model and related measuremeasure
in a highin a high--level formalismlevel formalism

transformationtransformation

Intermediate Intermediate 
level modellevel model

Markov Chain described Markov Chain described 
by matrix by matrix QQ (+ vector (+ vector pp00))

state spacestate space
generationgeneration

NumericalNumerical
solutionsolution

Solution vectorSolution vector

Intermediate Intermediate 
level resultlevel result

transformationtransformation

rewardreward
computationcomputation
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Markov ChainsMarkov ChainsMarkov Chains

Core step in most validation procedures computation of 

• the stationary distribution pQ=0 or pP=p (and peT=1.0)

• the transient  distribution pt = p0exp(-Qt) or p(k) = p(0)Pk

• more complex measures like accumulated values over 
some interval of time

Here we consider stationary analysis of Markov chains withHere we consider stationary analysis of Markov chains with
•• a finite state space a finite state space S={0,...,nS={0,...,n--1}1}
•• an irreducible matrix an irreducible matrix QQ or an irreducible and or an irreducible and aperiodicaperiodic

matrix matrix PP
ØØ Stationary solution vector Stationary solution vector pp exists uniquelyexists uniquely
ØØ Initial distribution Initial distribution pp00 is not required is not required 

(or might be chosen to support iterative solution techniques)(or might be chosen to support iterative solution techniques)
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MarkocMarkocMarkoc ChainsChainsChains

For stationary analysis:  DTMC <=> CTMC
P = Q/α + I for some α > max|Q(i,i)|
⇒ pP=p <=> pQ = 0
⇒ we consider stationary analysis of ergodic CTMCs

(numerical solution of linear equations)

Observe that the equality of Observe that the equality of CTMCsCTMCs and and DTMCsDTMCs holds only holds only 
at the solution level they differ if structured analysis at the solution level they differ if structured analysis 
techniques are considered!techniques are considered!
Main difference: Main difference: 
•• Simultaneous events in DTMC Simultaneous events in DTMC 
ØØ more nonmore non--zero elementszero elements
ØØ different structure of the matrixdifferent structure of the matrix
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Markov ChainsMarkov ChainsMarkov Chains

Properties of matrix Properties of matrix QQ::
•• singular Msingular M--matrix of rank matrix of rank nn--11
•• usually nonusually non--symmetricsymmetric

•• usually huge usually huge n n ≈≈ 101066--101077 or above (state space explosion)or above (state space explosion)
•• usually very sparse usually very sparse nz/n  nz/n  ≈≈ 101011--101022 ((nznz=non=non--zeros)zeros)
•• computation of computation of pp is considered as an issue/challengeis considered as an issue/challenge

in numerical analysis !in numerical analysis !

Stationary solution of a CTMC is nothing more than Stationary solution of a CTMC is nothing more than 
solution of a set of linear equations!solution of a set of linear equations!
We know how to compute it We know how to compute it fromfrom high school!high school!
What is the problem?What is the problem?
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Markov ChainsMarkov ChainsMarkov Chains
Dimension of Q implies that 
• Direct solvers are not usable 

(due to space and time constraints)
• Sparse storage schemes have to be used for matrices
• Time and space efficient algorithms are important

Rank condition implies

• pQ=0 ⇔ βpQ=0 for all β

• infinitely many solutions if the above system is solved

• integration of the normalization condition in the matrix is not 
recommended!
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OverviewOverviewOverview

• Motivation
• Markov chains
• Numerical Solution Methods for Sparse 

Matrices
• Structured Representations of Matrices
• Numerical Solution Methods for Structured 

Matrices
• Challenges and Ideas
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Numerical solutionNumerical solutionNumerical solution

• Numerical Solution Methods for Sparse 
Matrices

Ø An overview of available techniques

ØUsed data structure and available 
methods

Ø Some experiments with “small” models
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Numerical SolutionNumerical SolutionNumerical Solution

Numerical Analysis Techniques for Numerical Analysis Techniques for CTMCsCTMCs

Direct Techniques Direct Techniques 
variants of variants of 

Gaussian eliminationGaussian elimination

Basic iterativeBasic iterative
techniquestechniques

ProjectionProjection
techniquestechniques

++preconditionerspreconditioners

Specific MarkovSpecific Markov
chain solverchain solver
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Numerical Solution Numerical Solution Numerical Solution 

Direct Methods 
Gaussian elimination in Gaussian elimination in 
different variants:different variants:

not reduced not reduced 
in step iin step i

reduced in step ireduced in step i

zz
ee
rr
oo

pivotpivot
elementelement

eliminateeliminate

Some remarks:Some remarks:
QQ is diagonally dominantis diagonally dominant
?? no pivot search necessaryno pivot search necessary
•• Method applicable to Method applicable to QQ or or QQTT

•• Normalization condition Normalization condition 
may be included in may be included in QQ

(as last row)(as last row)
oror
the last element is set and the the last element is set and the 
resulting vector is normalizedresulting vector is normalized

•• Method generates fillMethod generates fill--inin
(for sparse matrices reallocation of (for sparse matrices reallocation of 
space becomes necessary)space becomes necessary)
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NumericalNumericalNumerical SolutionSolutionSolution

Basic iterative techniques
• x(k) = x(k-1) + x(k-1)Q/α Power method (slow, reliable)

Q = L + U – D (upper/lower triangle, diagonal)
• x(k) = ωx(k-1) (L+U)D-1 + (1-ω) x(k-1) JOR
• x(k) = ωx(k-1) U(D-L)-1 + (1-ω) x(k-1) SOR

ØØ methods are easy to implementmethods are easy to implement

ØØ normalization for JOR/SOR during iteration possible and normalization for JOR/SOR during iteration possible and 
recommendedrecommended

ØØ convergence is usually achieved (at least by setting convergence is usually achieved (at least by setting ωω<1)<1)

ØØ optimal/good choice of optimal/good choice of ωω is an open problemis an open problem
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NumericalNumericalNumerical SolutionSolutionSolution

Projection Methods
Advanced techniques for the solution of linear equations
Ø often for symmetric matrices
Ø usually for regular systems
Idea: Approximate exact solution by repeated approximations 

taken from subspaces of smaller dimensions
Basic technique for non-symmetric systems: GMRES
Ø exact solution after at most n iterations
Ø all previous vectors have to be stored

Since we cannot store O(Since we cannot store O(nn))--vectors, we needvectors, we need
projectionprojection--methods requiring less vectors (shorter recurrences)methods requiring less vectors (shorter recurrences)
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NumericalNumericalNumerical SolutionSolutionSolution

Techniques that have been applied for CTMC-analysis
Ø restarted GMRES (r (≈10-30) additional vectors)
Ø CGS (5 additional vectors)
Ø TFQMR (6 additional vectors)
Ø BiCGStab (5 additional vectors)

Remarks:Remarks:
ØØ convergence of projection methods often irregularconvergence of projection methods often irregular
ØØ all methods may break downall methods may break down
ØØ implementation is more complex (templates are available)implementation is more complex (templates are available)

•• beware of normalization in CGS, TFQMR, beware of normalization in CGS, TFQMR, BiCGStabBiCGStab (!)(!)
•• how to test for zero (?)how to test for zero (?)

ØØ if used in symbolic techniques, storage for additional vectorsif used in symbolic techniques, storage for additional vectors
is a major disadvantageis a major disadvantage
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NumericalNumericalNumerical SolutionSolutionSolution

Solve pM-1Q=0 or pQM-1=0 for M≈Q
Ø usually M-1 is not built, instead xM = y is solved

⇒ find M≈Q such that xM = y can be efficiently solved
and M is easy to compute and store

ØØprojection methods are recommended to be used inprojection methods are recommended to be used in
combination with combination with preconditionerspreconditioners

ØØ SOR and JOR can be interpreted as preconditioned PowerSOR and JOR can be interpreted as preconditioned Power
methodsmethods

PreconditioningPreconditioning
If convergence of an iterative technique is slow the technique 
might be applied to a modified system with the same solution 
where convergence is faster
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Numerical SolutionNumerical SolutionNumerical Solution

Common preconditioners incomplete LU-factorizations:
M=LU˜ Q such that xM=y ⇒ xLU = y ⇒ zU = y and xL = z
two back substitutions with triangular matrices
• ILU0: Perform LU-factorization using the non-zero 

structure of Q only
+ no need to reallocate space ⇒ usually very efficient
– for Markov chains not as effective as for other 

applications
• ILUTh: Perform LU-factorization per row and store only 

element larger than threshold th
+ choice of th determines approximation
– reallocation of space becomes necessary ⇒ often 

inefficient
– good/bad choice of th a-priori unknown
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NumericalNumericalNumerical SolutionSolutionSolution

Specific techniques for Markov chain analysis

Techniques exploit structure of the matrix Q

• GTH-algorithm for direct solution 
Ø Variant of Gaussian elimination
Ø Exploitation of the fact that the sum of non-diagonal elements 

equals the absolute value of the diagonal element ⇒
implementation without subtraction

+ Algorithm is more stable than Gaussian elimination
– Algorithm requires access to rows and columns 

(problems with sparse storage schemes)

• Matrix analytic/geometric techniques
Ø Exploitation of a block-repetitive structure of Q 
+ Efficient algorithms for very specific problems
- not general purpose

Both approaches will not be considered here!Both approaches will not be considered here!
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Numerical SolutionNumerical SolutionNumerical Solution

Most Most CTMCsCTMCs have a lot of structure introduced by the have a lot of structure introduced by the 
high level specification:high level specification:

CPUCPU

MemoryMemory DiskDisk
PopulPopul nn PopulPopul NN--nn

















+++

+
=

]1,1[]0,1[

]1,0[]0,0[

NNN

N

QQ

QQ
Q

L

MOM
L

Exploitation of the block structure:Exploitation of the block structure:
•• Block Gauss Seidel iterations Block Gauss Seidel iterations 

solve solve pp(k)(k)[X][X]QQ[X,Y[X,Y]=]=bb(k(k--1)1)[X][X] for every block in each iterationfor every block in each iteration
•• Introduce aggregation/Introduce aggregation/disaggregationdisaggregation

•• Aggregate each block into a single elementAggregate each block into a single element
•• Solve aggregated system and redirect solutionSolve aggregated system and redirect solution

KMSKMS
KouryKoury, , McAllister,StewartMcAllister,Stewart 8484
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Numerical SolutionNumerical SolutionNumerical Solution

2.  Solve2.  Solve 0Qy =ˆˆ

3.  3.  Disaggregation Disaggregation ][))][/()(ˆ(][ KKKK T xexyx =

















+++

+
=

)1,1(ˆ)0,1(ˆ

)1,0(ˆ)0,0(ˆ

ˆ

NNN

N

QQ

QQ
Q

L

MOM
L

Aggregated matrixAggregated matrix
of order of order NxNNxN

where where TLKKLK eQxQ ],[][),(ˆ =

1.1.

and and xx is the current guess of the solutionis the current guess of the solution

Aggregation/Aggregation/DisaggregationDisaggregation (A/D)(A/D)--steps can be combined steps can be combined 
with many iterative solution techniques!with many iterative solution techniques!
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Numerical SolutionNumerical SolutionNumerical Solution

Exploitation of repeated aggregation/disaggregation without 
a block structure of Q

Multi-Level Approach (Horton-Leutenegger 94)

iterateiterate iterateiterate

projectproject

iterateiterate

projectproject

redirectredirectredirectredirect
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Numerical SolutionNumerical SolutionNumerical Solution

Implementation issues of the multi-level method
• Aggregation is done without using structuring information
• All aggregated matrices have to be filled in every cycle
• Number of iterations per level and number of states to be 

aggregated are parameters of the method
• Usually SOR iterations are applied 
Implementation issues of KMS and BSOR
• Aggregation is done with respect to the model structure
• Only one aggregated matrix needs to be filled in a cycle
• If blocks are small enough, LU-factorization is applied at 

a block level (only one factorization) 
otherwise iterative techniques are applied
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NumericalNumericalNumerical Solution Solution Solution 
General General questionsquestions

ØØWhat is the most efficient method for a given model?What is the most efficient method for a given model?

ØØ Are projection methods generally superior to other methods?Are projection methods generally superior to other methods?

ØØWhat are the optimal parameters for a method?What are the optimal parameters for a method?

General answers and theoretical results are not availableGeneral answers and theoretical results are not available
ØØ experimental work is necessary to give at least guidelinesexperimental work is necessary to give at least guidelines
ButBut
ØØ experiments have to be done and interpreted with much careexperiments have to be done and interpreted with much care

because the performance of the methods depends on because the performance of the methods depends on 
implementation, compiler, compiler options, architecture, …implementation, compiler, compiler options, architecture, …
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Numerical SolutionNumerical SolutionNumerical Solution

Requirements for meaningful experiments
• Methods have to be implemented in an efficient way 

(MATLAB does not work)
• Implementations have to be comparable

(identical data structures, identical basic functions, 
no prototype implementation of some methods 

compared with optimized implementation of others)
• Experiments have to be made on identical machines 

under identical load conditions
• Experiments have to consider relevant models resulting 

in matrices with different properties
• Experiments have to compute results with a reasonable 

accuracy
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Numerical SolutionNumerical SolutionNumerical Solution

This implies that for successful experimentation
• A set of solution methods has to be available
• A large number of experiments has to be performed

(number of methods * number of models * number of replications)

ØØ Experience shows that for nearly every method a model Experience shows that for nearly every method a model 
exists such that the method behaves goodexists such that the method behaves good

ØØ Even if all this is done we can only get some hints but no Even if all this is done we can only get some hints but no 
final answers about the quality of different methodsfinal answers about the quality of different methods
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Numerical solutionNumerical solutionNumerical solution

• Numerical Solution Methods for Sparse 
Matrices

Ø An overview of available techniques

ØUsed data structure and available 
methods

Ø Some experiments with “small” models
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Numerical  Numerical  Numerical  SolutionSolutionSolution

Data structures to store Q
Ø sparse matrix data-structures (O(n) )
Ø symbolic representations (<<O(n))

• Kronecker-based
• hierarchical Kronecker structures
• matrix diagrams

• MTBDDs

Data structures to store vectors
Ø arrays (O(n))
Ø symbolic representation have not been used 

successfully yet

Implementations issuesImplementations issues
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Numerical SolutionsNumerical SolutionsNumerical Solutions

The (never ending discussion about) the programming 
language

• Most numerical programs are written in Fortran
• In Computer Science Fortran is rarely considered as an 

appropriate language
• Modern languages like Java are not really usable for large 

computation

ØØOur Our compromisecompromise is an implementationis an implementation in C in C 
ØØ Exploitation of pointer and dynamic memory Exploitation of pointer and dynamic memory 

allocation/allocation/deallocationdeallocation
ØØ Definition of a common set of basic data structures Definition of a common set of basic data structures 

with the required operationwith the required operation
ØØ Use of a few basic functions from Use of a few basic functions from Netlib  Netlib  
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Numerical SolutionNumerical SolutionNumerical Solution

Sparse matrix structureSparse matrix structure

QQ

rowindrowinddiagonalsdiagonals

QQ(0,0)(0,0)

QQ(1,1)(1,1)

....

....

....

QQ(n(n--1,n1,n--1)1)

colindcolind
valval

....11

QQ(0,1)(0,1) QQ(0,4)(0,4)

44

....
00

QQ(1,0)(1,0)

nz0nz0

11

……

Flexible data structure Flexible data structure 

•• Access to the elements per rowAccess to the elements per row

•• Implementation of a large number Implementation of a large number 
of basic functions using the data of basic functions using the data 
structurestructure

•• Implementation of direct methods Implementation of direct methods 
requires reallocations per rowrequires reallocations per row
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Numerical SolutionNumerical SolutionNumerical Solution

Based on the matrix structure and the basic routines 
numerical solution methods have been implemented

• File interface for sparse matrices
• Model specification using colored GSPNs (APNN-

toolbox) or textual interface (Usenum)
Available methods
• Direct method LU-Decomposition
• Iterative methods Power, JOR, SOR (+ A/D steps)
• Projection methods Arnoldi, GMRES, DQGMRES, 

BiCGStab, TFQMR (+ ILU0, ILUTh preconditioner, 
partially + A/D steps)

• Specifc methods for CTMCs: Multi level, IAD
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Numerical solutionNumerical solutionNumerical solution

• Numerical Solution Methods for Sparse 
Matrices

Ø An overview of available techniques

ØUsed data structure and available 
methods

Ø Some experiments with “small” models
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Numerical SolutionNumerical SolutionNumerical Solution

Some remarks about experimental results
They can never be comprehensive since
• we consider only a few models
• we consider only some variants of the methods 

(e.g., convergence of some methods depends on the ordering of 
states and we consider only one ordering, some methods have 
various parameters to tune etc.)

• we measure times on one architecture
…
But experimental results give some hints about the quality 

of different approaches!
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Numerical SolutionNumerical SolutionNumerical Solution

Small models :
8 different models with
Ø between 1,764 and 91,125 states 
Ø between 8,648 and 795,824 non-zeros
Ø different characteristics
Ø 3 models for communication systems (MSMQ, Courier, cqueues)
Ø 2 models for production/logistic systems (huck, kanban)
Ø 2 models with failures/repairs (availability, performability)
Ø 2 models with NCD-property (ncd, performability)
Ø 1 model with loose coupling due to small prob. (cqueues)
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Numerical SolutionNumerical SolutionNumerical Solution

14 different solution methods:
Ø JOR and SOR with ω=1.0 or 0.9
Ø SOR with A/D steps

Ø KMS aggregation/disaggregation algorithm 
(Stewart et al1984)

Ø ML-method with aggregation of 5 states and 5 iterations per level
(Horton-Leutenegger 1994)

Ø GMRES with r=20 with/without ILU0 or ILUTh(0.1max_diag) 
(Saad-Schultz1986)

Ø BiCGStab with/without ILU0 or ILUTh(0.1max_diag) 
(van der Vorst 1992)

Ø TFQMR with/without ILU0 or ILUTh(0.1max_diag) 
(Freund 1993)
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Numerical SolutionNumerical SolutionNumerical Solution

Some information about the experiments
• PC with 1.70 GHz Pentium, 768 MB main memory under 

Suse Linux 8.1
• Programs in C complied with gcc version 3.2 with 

parameter –O3
• Iterations are stopped if the maximum norm of the 

residual vector becomes smaller than 10-8 or if 1000 
seconds of CPU elapsed 
(the fastest methods requires in all cases less than 10.1 seconds)

• For each model methods are ranked first, second, third 
according to CPU-time and the mean rank of the 
methods are given
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TFQMR+ILU0
KMS
BiCGStab+ILU0
JOR
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BiCGStab+ILUTh
TFQMR+ILUTh
GMRES
TFQMR
GMRES+ILUTh

ØØ Comparison of the methods concerning their rankComparison of the methods concerning their rank
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Numerical SolutionNumerical SolutionNumerical Solution

Some explanations and observations
• SOR variants (SOR, ML, SOR A/D) are reliable 

(convergence at least after setting ω=0.9)
• Projection methods are less reliable 

– If used without preconditioners often not faster than 
SOR

– ILU0 precondioners are very effective on some 
examples, but have a negative effect on others 

(for the NCD examples)
– ILUTh preconditioners reduce the number of 

iterations, but computation of the precondtioners
takes too long
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ØØ Solution time for the nonSolution time for the non--NCD examplesNCD examples
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Solution Solution Solution MethdosMethdosMethdos

Limits of the solution approach

• Memory required for the representation of the matrix and 
the vectors 
(especially for projection methods)

• Solution time due to an extensive number of iterations

• Exploitation of structure for the solution is restricted to a 
few methods and to a block structure of the generator 
matrix 
(but all matrices result from highly structured 

descriptions and contain much more structure)
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OverviewOverviewOverview

• Motivation
• Markov chains
• Numerical Solution Methods for Sparse 

Matrices
• Structured Representations of Matrices
• Numerical Solution Methods for Structured 

Matrices
• Challenges and Ideas
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Numerical solutionNumerical solutionNumerical solution

• Structured representations of matrices

Ø The basic idea of representing 
structured matrices

Ø Extensions to avoid unreachable states

ØData structures 

ØRealization of vector matrix products

ØWhat about the vector?
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Structured RepresentationsStructured RepresentationsStructured Representations

For large CTMCs sparse representations of Q require too 
much space

Ø Choose some symbolic representation for Q
Ø Perform vector matrix product computations with the 

symbolic representations
Ø Several symbolic representations are available most rely 

on similar ideas
Ø Models are composed of interacting components 
Ø Represent components by matrices
Ø Compose small component matrices to build the large generator

Kronecker operations are used to compose the small matrices
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StructuredStructuredStructured RepresentationsRepresentationsRepresentations
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Structured RepresentationsStructured RepresentationsStructured Representations
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StructuredStructuredStructured RepresentationRepresentationRepresentation
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Structured RepresentationsStructured RepresentationsStructured Representations

• Set of J automata, each automaton has finite state space 
• Communication between automata by synchronized 

transitions TS
• Automaton i has state space: S(i) ={0,..,n(i)-1}

• Automaton i is represented by
• Global descriptor matrix
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Structured RepresentationsStructured RepresentationsStructured Representations

Advantage of the representation

Space instead of 
2)(

1 )( iJ
i nT ∑ =⋅ ( )21

)(∏ =
J
i

in

But usually
jSPSS J

1j=×=⊆
Often |PS|>>|S|
(1% or less of the potential states are reachble)
Examples:
• Closed QNs
• Exclusive access to resources
• ..

Any method dealing with Any method dealing with PSPS instead of instead of SS
will not work for most models!will not work for most models!
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Structured RepresentationsStructured RepresentationsStructured Representations

• Structured representations of matrices

Ø The basic idea of representing 
structured matrices

Ø Extensions to avoid unreachable states

ØData structures 

ØRealization of vector matrix products

ØWhat about the vector?
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Hierarchical RepresentationHierarchical RepresentationHierarchical Representation

Central problem we have  to address: S⊂PS

Ø representation S=×S(i) is compact,
but may contain a large number of unreachable states

Ø enumeration of RS contains no unreachable states,
but may require a lot of space

Idea to avoid state space explosion Idea to avoid state space explosion 
(i.e. to avoid enumeration of all states/transitions)(i.e. to avoid enumeration of all states/transitions)

ØØ representation of sets of states as a union of  crossrepresentation of sets of states as a union of  cross--
products of small setsproducts of small sets

ØØ represent the matrix as a blockrepresent the matrix as a block--structured matrix wherestructured matrix where
each block is described as a sum of each block is described as a sum of KroneckerKronecker products of products of 
small matricessmall matrices
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Structured RepresentationsStructured RepresentationsStructured Representations

S(1) = S(2)=
Two automata
state spaces
partioned in subsets

Reachable combinations

∪ ×{ }∪ ×{ }∪ ×{ }×{ }
Unreachable combinations

∪{ }× ∪{ }× ∪{ }× ∪{ }× { }×
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Structured RepresentationsStructured RepresentationsStructured Representations

Interpretation as a hierarchical description:Interpretation as a hierarchical description:
Macro state space including transitions

Correspondence
to micro states

Detailed state space

∪ ×{ }∪ ×{ }∪ ×{ }×{ }
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Structured RepresentationsStructured RepresentationsStructured Representations

Generation of the hierarchical representation

• From the model specification
E.g., in closed queueing networks by considering subnet 

population, in SPNs by computing regions, …

• From the description as an automaton by an algorithm 
computation of the coarsest representation for a given 

decomposition in automata

Ø Both approaches have been implemented and work 
very well in practice
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Matrix representation: 
















−−−

−
=

]1,1[]0,1[

]1,0[]0,0[

mmm

m

QQ

QQ
Q

L
MOM

L

)])(~),(~[)~,~()](~),(~[(]~,~[ )(

1

)(

1
iiii j

t

J

j

j
t

t

J

j
t yxDyxyxEyxQ

==
⊗+⊗= ∑ δλ
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Structured RepresentationsStructured RepresentationsStructured Representations

Alternative methods to represent state space and 
matrices compositionally

• Computation of a mapping between PS and S
+ General approach possible for every structure
– Huge overhead to realize operations on vectors and 

matrices
• Matrix diagrams presenting matrices in a graph structure
ØComparison between hierarchical structures and 

matrix diagrams is still missing, but available results 
suggest

+ Matrix diagrams seem to be slightly more general
- Hierarchical representations seem to allow slightly 

more efficient realizations of operations
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Structured RepresentationsStructured RepresentationsStructured Representations

• Structured representations of matrices

Ø The basic idea of representing 
structured matrices

Ø Extensions to avoid unreachable states

ØData structures 

ØRealization of vector matrix products

ØWhat about the vector?
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Data Structures to represent hierarchical matricesData Structures to represent hierarchical matrices
For each For each component,component, each macro each macro state (pair)state (pair) and and 
•• each synchronized transition: one sparse matrix each synchronized transition: one sparse matrix 
•• all local transitions: one sparse matrixall local transitions: one sparse matrix
Size of the matrices equals the number of detailed states in Size of the matrices equals the number of detailed states in 
this macro statethis macro state

One row of the global generator in sparse format One row of the global generator in sparse format 

Column indexColumn index
OperationOperation
RateRate
MatricesMatrices

c0c0

⊕⊕
λλ111.01.0

List of sparse matrices one per nonList of sparse matrices one per non--identity matrixidentity matrix

List of sparse matrices one per nonList of sparse matrices one per non--zero matrixzero matrix

⊗⊗
c1c1

……
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StrcuturedStrcuturedStrcutured RepresentationsRepresentationsRepresentations

1.00E+00
1.00E+01
1.00E+02
1.00E+03
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1.00E+06
1.00E+07
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1.00E+10

Pusher Courier MSMQ Kanban

Memory requirements

non-zeros Q number of states
non-zeros Kronecker
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Structured RepresentationsStructured RepresentationsStructured Representations

• Structured representations of matrices

Ø The basic idea of representing 
structured matrices

Ø Extensions to avoid unreachable states

ØData structures 

ØRealization of vector matrix products

ØWhat about the vector?
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Structured RepresentationsStructured RepresentationsStructured Representations
Basic operation of most iterative techniques:Basic operation of most iterative techniques:

Computation of vector matrix productsComputation of vector matrix products

•• In the hierarchical representation this is done at a block In the hierarchical representation this is done at a block 
levellevel

•• Each product Each product subvectorsubvector--submatrixsubmatrix can be realized by can be realized by 
repeated computations of the form:repeated computations of the form:
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StructuredStructuredStructured RepresentationsRepresentationsRepresentations

How to compute:
• Kronecker product as sequence of products
• nice special case for i=J: block diagonal structure, n/n(i)

repetitions
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Multiplication of a vector with a Kronecker product of two 3X3 matrices

x(A⊗B)=x(A⊗I3)(I3⊗B)
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• Structured representations of matrices

Ø The basic idea of representing 
structured matrices

Ø Extensions to avoid unreachable states

ØData structures 

ØRealization of vector matrix products

ØWhat about the vector?
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Structured RepresentationsStructured RepresentationsStructured Representations

Vectors become the memory bottleneck 
Several compact representations of vectors have been tried
MDBBs, ADDs, PDGs …
But a lot of problems arise since
• The representation does not remain compact
• Numerical inaccuracies occur
• Operations become extremely slow 

(slow down by 2 or more orders of magnitude!)

To the best of my knowledge no compact 
representation of vectors exist which outperforms flat 
representations on a larger set of models or is at least 
applicable to a larger set of models!
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OverviewOverviewOverview

• Motivation
• Markov chains
• Numerical Solution Methods for Sparse 

Matrices
• Structured Representations of Matrices
• Numerical Solution Methods for Structured 

Matrices
• Challenges and Ideas
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Structured SolutionStructured SolutionStructured Solution

• Numerical Solution Methods for Structured 
Matrices 

Ø Structured Realizations of known 
Techniques

ØNew Solution Approaches 

ØResults for the Small Examples

Ø Some Larger Examples

ØWhere are we now
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Structured SolutionStructured SolutionStructured Solution

• Vector matrix products are available such that every 
method based on this operation can be easily realized
Power, JOR, GMRES, BiCGStab, TFQMR, …

• Realization of SOR provides problems since it is not 
based on simple vector matrix products
Proposed solutions
– Computation of matrix elements for multiplication

(Buchholz,Ciardo,Donatelli,Kemper Informs J. on Comp. 2000)

– Exploitation of matrix splittings
(Dayar, Uysal EJOR 1999)

Both solution are comparable and require additional 
effort, we use the second version in the experiments
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Structured SolutionStructured SolutionStructured Solution

What cannot be done with the compact representation?
Realization of any kind of matrix transformation that 

destroys the structure!
• Direct solution methods are not applicable
• Preconditioners of the ILU-type are not applicable
• The standard multi-level and aggregation/Disaggregation

methods are not immediately applicable
(but for these approaches new and more advanced approaches are 

available !)
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Structured SolutionStructured SolutionStructured Solution
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ØØ Price for the compact matrix representation in solution timePrice for the compact matrix representation in solution time
(measured as the relation between structured and sparse matrix (measured as the relation between structured and sparse matrix 
representation for the small example models)representation for the small example models)
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For methods which exploit vector matrix products 
(like JOR, BiCGStab)

• The mean slow down is less than 2
• In some lucky cases a small speedup is observed 

(more lucky cases occur for discrete time models with simultaneous 
events)

• Results the maximum slow down (about 5) from the 
availability model with local failures and synchronized 
repairs among all processes (worst case example)
– all other models result in slow downs of less than 3

For SOR is the effort per iteration increased by a factor of 
about 5.5
(for sparse matrices no slow down occurs if SOR is used)
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Structured SolutionStructured SolutionStructured Solution
WorstWorst casecase exampleexample modelmodel
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Sometimes much larger slow downs are reported in the 
literature, what are the reasons?

• Use of a wrong representation
– including non reachable states
– causing a lot of overhead

• Inefficient implementation of structured techniques
– approaches are hard to implement (many pointers, …)
– implementation is done as student work whereas 

sparse matrix implementations are highly optimized
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Structured SolutionStructured SolutionStructured Solution

Since sparse matrix and Kronecker representations 
describe different ways to compute vector matrix 
products, numerical results will not be identical!

Our observations:
• No approach yields more accurate results in general
• In all examples the number of iterations for JOR, SOR 

and GMRES are identical
• Differences in the number of iterations occur in BiCGStab

and TFQMR
– Usually the differences are small,
– but in a few examples significantly different numbers 

of iterations have been observed
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Structured SolutionStructured SolutionStructured Solution
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Structured SolutionStructured SolutionStructured Solution
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Structured SolutionStructured SolutionStructured Solution

• Numerical Solution Methods for Structured 
Matrices 

Ø Structured Realizations of known 
Techniques

ØNew Solution Approaches 

ØResults for the Small Examples

Ø Some Larger Examples

ØWhere are we now
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Structured SolutionStructured SolutionStructured Solution

Can we gain from the model structure also for the 
solution?

• Much less work for solution has been done than for 
representation

• Structure of the model often corresponds to a 
behaviorially oriented decomposition and can be 
exploited for solution

• Most solvers for CTMCs exploit some structure 
(e.g., A/D method, ML, ..)

• First experience with newly developed solvers for 
structured representations are very encouraging

There is much potential for the development of efficient 
numerical solution algorithms for compact matrix 
representations
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Structured SolutionStructured SolutionStructured Solution

Preconditioning techniques for structured representations
(Preconditioner has to be represented in a compact form)

• Separable preconditioner resulting from the inversion of 
component matrices (Buchholz NSMC 99)
– Approximation of the Neumann expansion of the matrix
– Compact representation
– Solution effort is reduced only for some examples

• Nearest Kronecker product preconditioner
(Stewart/Langville J. on Num. Lin. Alg. 02)
– Approximation of Q by a single Kronecker product which is easy to invert
– Only propritary implementation for a restricted class of models available
– First results show improved solution times, but results for large models 

are missing
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Structured SolutionStructured SolutionStructured Solution

• BSOR for structured matrices
(Buchholz/Dayar NSMC 03, for details attend the talk)
– Hierarchical representations naturally define blocks, additional

blocks due to Kronecker structure
– Solution of blocks by LU- or Shur-decomposition
– Efficient solver for a large class of models

• BSOR as preconditioner for projection methods
(Buchholz/Dayar submitted 03)
– BSOR is applied to the residual vector of projection methods 

yielding a new preconditioner

– Efficient solver for a large class of models
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Structured SolutionStructured SolutionStructured Solution

• Aggregation/Disaggregation for structured 
representations
(Buchholz EJOR 1999, APNUM 1999)
– Aggregation/Disaggregation steps at a block level as in methods 

for sparse matrices
– Additional aggregation at a component level

• Projection of the current solution vector for a single 
component

• Solution of an aggregated system and correction of the 
current overall solution

• Combination with standard iterative solver (JOR, SOR, ..)
– Efficient implementation due to exploitation of Kronecker

structure
– Improved solution times if components are loosely coupled
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Structured SolutionStructured SolutionStructured Solution

• Multi-level solution for structured systems
(Buchholz SIGMAX 99, Buchholz/Dayar submitted 03)
– Method uses ideas from multigrid methods
– Generation of aggregated system with respect  to the model 

structure by aggregation of components
– Iteration at different levels
– Multiplicative projection and correction functions

– Very efficient implementation due to exploitation of Kronecker
structure

– Aggregated matrix results from detailed matrix after removing 
some matrices in the Kronecker representation

(no explicit generation or storage of aggregated system)

– Extremely efficient solvers for most models
• scalable to huge systems
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StructuredStructuredStructured SolutionSolutionSolution

iteriter

iteriter

disaggdisagg

aggagg
iteriter

iteriter

disaggdisagg

Shematic description of multi-level for one macro state

aggagg

solvesolve
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StructuredStructuredStructured SolutionSolutionSolution

Natural integration in Kronecker representation
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•• Examples shows VExamples shows V--cyclecycle
other cycles from other cycles from 

multigridmultigrid can as well can as well 
be realizedbe realized

•• Different realizationsDifferent realizations
•• different iteration different iteration 

methodsmethods
•• different stopping different stopping 

criteria criteria 
•• Efficient implementation Efficient implementation 

requires some effortrequires some effort
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Structured SolutionStructured SolutionStructured Solution

• Numerical Solution Methods for Structured 
Matrices 

Ø Structured Realizations of known 
Techniques

ØNew Solution Approaches 

ØResults for the Small Examples

Ø Some Larger Examples

ØWhere are we now
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Structured SolutionStructured SolutionStructured Solution

Empirical comparison using 16 different structured solution 
methods:

Ø JOR and SOR

Ø BSOR 

Ø BiCGStab without/with BSOR- or separable-precond. 

Ø TFQMR with and without BSOR- or separable-precond. 

Ø CGS 

Ø GMRES

Ø Multi-Level with JOR or SOR and fixed number of iterations

Ø Multi-level with SOR and dynamic number of iterations
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Numerical SolutionNumerical SolutionNumerical Solution
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Numerical SolutionNumerical SolutionNumerical Solution
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Numerical SolutionNumerical SolutionNumerical Solution
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Structured SolutionStructured SolutionStructured Solution

Observations from medium sized models

• Methods on sparse matrices are slightly faster than 
structured methods on model with about 105 states

• Difference between fast methods on sparse matrices and 
advanced structured methods is very small
– Matrix generation has not been considered and is much faster for

structured representations
– Advanced structured models can be improved

(e.g., other cycles in ML-type methods, …)

• Real advantage for structured methods when model size 
increases
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Structured SolutionStructured SolutionStructured Solution

• Numerical Solution Methods for Structured 
Matrices 

Ø Structured Realizations of known 
Techniques

ØNew Solution Approaches 

ØResults for the Small Examples

Ø Some Larger Examples

ØWhere are we now
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Structured SolutionsStructured SolutionsStructured Solutions

Larger models :
10 different models with
Ø between 358,560 and 2,945,880 states 
Ø between  1,871,004 and 26,172,344 transitions

Hierarchical Kronecker representation with
Ø between 1 and 1774 macro states/blocks
Ø between 370 and 11,480 non-zero elements

•• 4 4 models for communication systems/protocols models for communication systems/protocols 
(msmq1/2, courier1/2)(msmq1/2, courier1/2)

•• 4 models from the manufacturing area (kanban1/2/3, fms)4 models from the manufacturing area (kanban1/2/3, fms)
•• 1 model from computer system modeling (ncd,qh1 model from computer system modeling (ncd,qh--realcontrol)realcontrol)
•• 2 models with ncd property (ncd, kanban3)2 models with ncd property (ncd, kanban3)
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Structured SolutionStructured SolutionStructured Solution

Experiment conditions
• Iterations are stopped if

– The maximum norm of the residual vector is less than 
10-8 or

– 7000 seconds of CPU time elapsed
• Methods are ranked for each example and the mean rank 

for each method is determined
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Structured SolutionStructured SolutionStructured Solution

Empirical comparison using 14 different structured solution 
methods:

Ø JOR, SJOR, SOR and SJOR A/D

Ø BSOR 

Ø BiCGStab without/with BSOR- or separable-precond. 

Ø TFQMR with and without BSOR- or separable-precond. 

Ø CGS 

Ø Multi-Level with JOR or SOR and fixed number of iterations

Ø Multi-level with SOR and dynamic number of iterations
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Structured  SolutionStructured  SolutionStructured  Solution
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Structured SolutionStructured SolutionStructured Solution

Some observations
• Advanced methods outperform standard methods clearly
• ML-methods scale better than BSOR

MLSOR is the clear winner 
– Solution of all models with MLSOR in at most 12 minutes

• No difference between NCD and non-NCD examples
• Projection methods without BSOR-preconditioner show 

convergence problems on several examples
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Structured SolutionStructured SolutionStructured Solution

• Numerical Solution Methods for Structured 
Matrices 

Ø Structured Realizations of known 
Techniques

ØNew Solution Approaches 

ØResults for the Small Examples

Ø Some Larger Examples

ØWhere are we now
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Structured Solutions Structured Solutions Structured Solutions 

Ø Compact matrix representations exist for a large class of 
models
ØØProblem of unreachable states in earlier approaches Problem of unreachable states in earlier approaches 

has been solvedhas been solved
ØØReinvention of a Reinvention of a KroneckerKronecker representation for representation for 

model class xyz without an implementation is not model class xyz without an implementation is not 
necessary and useless!necessary and useless!

ØØMatrix generation is extremely efficient and huge Matrix generation is extremely efficient and huge 
transition system can be generated and represented transition system can be generated and represented 
on contemporary PCson contemporary PCs
ØØparallel state space generation is not necessary!parallel state space generation is not necessary!

ØØEfficient implementations of vector matrix products are Efficient implementations of vector matrix products are 
possible, but require a sophisticated design and possible, but require a sophisticated design and 
implementation of data structures and algorithmsimplementation of data structures and algorithms
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Structured SolutionStructured SolutionStructured Solution

Ø Model structure can be used to speed up solutions
Ø Although no black box method exist in general, multilevel 

methods seem to be a good candidates for reliable and 
efficient solvers 
ØBut still a lot of work remains to be done in this area

Ø On current PCs models with up to 107 states usually can 
be solved in a reasonable time
ØOut-of-core methods with sparse matrix representation 

are usually not competitive
ØOut-of-core methods with compact matrix 

representations and vectors partially stored on fast 
disks could be candidates to analyze larger models



54

TU Dresden TU Dresden TU Dresden lll ModellierungModellierungModellierung & Simulation & Simulation & Simulation lll 107107107
 Peter Buchholz 2003Peter Buchholz 2003

Structured SolutionStructured SolutionStructured Solution

Structured representations have been considered only for 
iterative numerical analysis, but they are useful for many 
other applications like

Ø Model reduction based on equivalence of components
Ø Approximate analysis of models using fixed point 

approaches
Ø Hybrid analysis by combination of numerical analysis and 

discrete event simulation
Ø Stochastic model checking
Ø Functional analysis
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OverviewOverviewOverview

• Motivation
• Markov chains
• Numerical Solution Methods for Sparse 

Matrices
• Structured Representations of Matrices
• Numerical Solution Methods for Structured 

Matrices
• Challenges and Ideas
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Conclusion Conclusion Conclusion 

Research goals:
Ø Optimal/good parametrization of Kronecker-based 

solution techniques
Ø Other solution techniques exploiting the structure
Ø Empirical comparison of different techniques, different 

data structures, different implementations
Ø Reliable and fast implementations of numerical 

techniques for CTMCs
(like Templates, netlib for linear algebra)

Ø Parallelization of the techniques
Ø Provable good approximation techniques
Ø Compact representations for the solution/iteration vector

(if they exist at all)


