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Abstract. Phase Type Distributions (PHDs) and Markovian Arrival
Processes (MAPs) are established models in computational probability
to describe random processes in stochastic models. In this paper we ex-
tend MAPs to Multi-Dimensional MAPs (MDMAPs) which are a model
for random vectors that may be correlated in different dimensions. The
computation of different quantities like joint moments or conditional den-
sities is introduced and a first approach to compute parameters with re-
spect to measured data is presented.
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1 Introduction

In many application areas like computer networks [15], supply chains [27] or
dependable systems [18], high dimensional data plays an important role in un-
derstanding, analyzing and improving the behavior of contemporary systems.
Currently available data is mainly analyzed offline to monitor or predict the be-
havior of complex systems. However, it is known that model-based approaches
are often necessary to understand and analyze large systems. In simulation mod-
els [24] and also in models based on Markov chains [12], multi-dimensional data
is usually described by independent data streams, where at most the elements
in one stream are correlated. In practice, multi-dimensional data is correlated in
several dimensions and this correlation cannot be neglected in realistic models.
The necessary models to describe such a behavior are denoted as multivariate
input models.

In multivariate input models one usually distinguishes between random vec-
tors which describe K-dimensional vectors of random variables that are cor-
related. Subsequent vectors are assumed to be independent. Random variables
that are correlated over time are described by stochastic processes. The com-
bination of both results in multivariate time series. Multivariate input models
are mainly considered in simulation, for an overview of available approaches
see [5]. Although different approaches for multivariate stochastic processes exist
their practical applicability is limited mainly due to very specific structures that
capture only parts of the observed behavior, complex methods for parameter



fitting, complex methods to generate random variates and the limiting possibil-
ities to perform numerical or analytical analysis of the models. Most promising
approaches seem to be VARTA processes [6] and copula-based models [3]. Both
approaches are restricted to specific marginal distributions, like normal distri-
butions or distributions of the Johnson-type. The VARTA approach has been
extended to phase type distributions in [21].

In computational probability [29, 31, 34] input models based on Markov pro-
cesses like phase type distributions (PHDs) or Markovian arrival processes
(MAPs) are very popular because they allow one to model a wide variety of
behaviors and they can also be analyzed by numerical techniques and not only
by simulation. MAPs are a model to describe correlated univariate processes and
are therefore an alternative to time series but they cannot be applied to describe
multivariate processes. In this paper we extend Markov models like PHDs and
MAPs to the multivariate case. This results in a new stochastic model which is
an alternative to VARTA processes and similar models. Some older approaches
to extend phase type distributions to multivariate phase type distributions exist
[1, 23]. However, the models defined in these papers differ from our model in
that they describe an absorbing Markov process with a multi-dimensional re-
ward structure to generate random vectors. Here, we consider parallel running
absorbing Markov processes which are coupled by the initial distributions. This
model allows us to generate random vectors with correlated components and
correlation between subsequent realizations.

The structure of the paper is as follows. In the following section we intro-
duce the notation and Markov input models. Afterwards, in Section 3, we define
the multi-dimensional stochastic model and define afterwards multi-dimensional
Markovian arrival processes (MDMAPs). In Section 4, the analysis of MDMAPs
is presented, followed by a first approach to fit the parameters according to some
quantities like joint moments or values of the conditional probability distribution
function. In Section 6 first examples are presented and then the paper is con-
cluded. Proofs of the theorems and major equations can be found in an online
appendix.

2 Background

We first introduce some notation and define afterwards the basic models used in
this paper.

2.1 Basic Notation

Matrices and vectors are denoted by bold face small and capital letters. I1 is a
column vector of 1s, all other vectors are row vectors. 0 is a matrix or vector
containing only 0 elements, I is the identity matrix, ei is the ith unit row vector.
aT describes the transposed of vector a and diag(a) denotes a diagonal matrix
with elements a(i) on the main diagonal. Rn×n is the set of n × n matrices.
Q(i•) and Q(•i) describe the ith row and column of matrix Q. A generator is a
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matrix Q ∈ RN×N with row sum zero (i.e., Q I1 = 0) and Q(i, j) ≥ 0 for i 6= j.
Q is a sub-generator if Q I1 ≤ 0 and some i ∈ {0, . . . , n − 1}1 exists such that
Q(i•) I1 < 0. In the sequel we assume that all sub-generators we consider in this
paper are non-singular which means that the inverse exists and is non-positive.
Q is irreducible if between every pair of states i, j a path i = i0, i1, . . . , ik = j
exists such that Q(ih−1, ih) > 0 for h = 1, . . . , k.

2.2 Markov Input Models

In stochastic modeling input modeling describes the generation of appropriate,
usually stochastic, models to represent the input parameters based on measured
data from some real process [24]. In simulation, traditionally standard distribu-
tions or stochastic processes have been used for this purpose. More recently input
models based on Markov processes like phase type distributions and Markovian
arrival processes gained much attention. These models are flexible and can be
used in simulation as well as in combination with numerical analysis techniques.
We use the following traditional definitions [12, 29].

Definition 1. A Phase Type Distribution (PHD) is defined by (π,D) where
π is the initial distribution and D is a sub-generator of an absorbing Markov
chain.

A PHD is characterized by the time to absorption of the absorbing Markov
chain described by (π,D). A Markovian Arrival Process [28, 26] is an extension
of a PHD.

Definition 2. A Markovian Arrival Process (MAP) is described by two matrices
(D,C)2 where D is a sub-generator, C ≥ 0 and Q = D +C is an irreducible
generator.

The interpretation of the behavior of a MAP is as follows. The process
performs transitions as described by the matrices D and C and whenever a
transition from C occurs, an event is triggered. Let d = C I1 = −D I1 and
P = (−D)

−1
C be the transition matrix of the embedded process at event times.

Since Q is irreducible, it has a unique stationary vector observing φQ = 0 and
φ I1 = 1. Then π = φC/ (φC I1), πP = π and π describes the stationary vector
of the MAP immediately after an event. (π,D) is the embedded PHD of the
MAP. We define the following two sets

inp (π,D) = inp (π) =
{
i|π(i) > 0

}
, outp (π,D) = outp (D) =

{
i|d(i) > 0

}
(1)

1 In an n-dimensional space elements are always numbered from 0 through n − 1
because this numbering is more appropriate for mapping multi-dimensional spaces
into a single space.

2 We use the names D and C rather than D0 and D1 for the matrices of a MAP
because the numbers in the postfix are later used to denote matrices of different
MAPs or PHDs.
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of input and output states. nc = |inp (π,D) | and nr = |outp (π,D) | are the
cardinalities of the sets. A PHD is input flexible if nc > 1 and it is output
flexible if nr > 1. If we assume that each input and output state describes an
individual stochastic behavior, then an input flexible PHD allows one to choose a
specific behavior by selecting the input state, an output flexible PHD allows one
to interpret the previous behavior by considering the output state. To expand a
PHD to a MAP (see [12, 19] for details), the PHD has to be input and output
flexible to specify correlation. A MAP (D,C) can also be represented as (D,G)
where C = diag(d)G and G is a matrix with G(i•) I1 = 1 for i ∈ outp(D) and 0
otherwise.

PHDs and MAPs can be easily analyzed according to several quantities in-
cluding moments, probability density and, in case of MAPs, joint moments or
joint densities. For details we refer to the literature [12]. Parameter fitting for
a stochastic model describes the process of finding good or optimal parameters
such that the stochastic model mimics the behavior of a real process for which
data is available. Parameter fitting for PHDs or MAPs is more complex than for
many other stochastic models because both models have a highly redundant rep-
resentation [32]. In principle two approaches can be applied. First, some derived
measures can be computed, like moments or joint moments and a least squares
approach is used to fit the parameters in such a way that the quantities of the
measured data are approximated by the PHD or MAP. Alternatively, maximum
likelihood estimators for the parameters can be used which are usually based on
the EM algorithm. For details about the corresponding algorithms we refer to
the literature [12].

3 Multi-Dimensional Data and Stochastic Models

We first introduce the basic setting for multivariate distributions and random
vectors. Afterwards we present a Markov model to describe those quantities.

3.1 Multi-Dimensional Data

Let X = (X1, . . . , XK) be a random vector where each Xk is a random vari-
able. We assume that all random variables are non-negative and the underlying
distribution functions have an infinite support. We denote by K the number
of dimensions or components of the random vector. If the random variables are
mutually independent, each Xk can be modeled by a MAP, if subsequent realiza-
tions of Xk are also independent, a PHD is sufficient. Here we consider the case
that various dependencies exist between the random variables and subsequent
realizations. Thus, X(t) is the vector observed at time t (= 1, 2, . . .) and X(t+h)

is the vector h steps later. In general X
(t)
k and X

(t)
l as well as X

(t)
k and X

(t+h)
l

may be correlated.
We assume that the stochastic structure of X is unknown but we can observe

realizations of X. Let x(i) =
(
x
(i)
1 , . . . , x

(i)
K

)
be the ith realization of X and
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x
(i)
k is the ith realization of Xk. From a sequence of observations x(1), . . . ,x(L)

various quantities can be estimated.

X̂j
k =

1

L

L∑
i=1

(
x
(i)
k

)j
and σ̂2

k =
1

L− 1

L∑
i=1

(
x
(i)
k − X̂

1
k

)2
(2)

are estimates for the jth moments and the variance of the random variables Xk.
We denote by R̂h the correlation matrix of elements h steps apart which contains
the correlation coefficients. Elements of the correlation matrix are estimated by

R̂h(k, l) =
1

(L− h− 1)σ̂kσ̂l

L−h∑
i=1

(
x
(i)
k − X̂

1
k

)(
x
(i+h)
l − X̂1

l

)
. (3)

The definition can be extended to higher order joint moments as follows.

Ĵm,nh (k, l) =
1

(L− h)

L−h∑
i=1

(
x
(i)
k

)m (
x
(i+h)
l

)n
(4)

where k, l ∈ {1, . . . ,K} and n,m ≥ 1. Similarly, the distribution function for
one or some dimensions of the random vector can be estimated. All presented
estimators are consistent. Like for joint moments in (4) we consider especially de-
pendencies between two components k and l which are described in the following
joint dependencies.

F̂ y,zh (k, l) =
1

L− h

L−h∑
i=1

δ
(
x
(i)
k ≤ y

)
δ
(
x
(i+h)
l ≤ z

)
(5)

3.2 Multi-Dimensional Markov Models

The available Markov models are not able to describe multi-dimensional data.
Therefore we propose an extended model which consists of K absorbing Markov
chains that run in parallel, the absorption time of the kth chain determines
the value of the kth random variable. After absorption of all chains, they are
restarted according to a joint probability distribution which depends on the
states immediately before absorption. The later concept is a direct extension of
the idea that is used in MAPs to describe correlation. The following definition
formalizes the model.

Definition 3. A Multi-Dimensional Markovian Arrival Process (MDMAP) is
defined by K sub-generators Dk of order nk (k = 1, . . . ,K) and a coupling
matrix G.

K is the dimension of the MDMAP. Matrix G is an n1:K × n1:K matrix
(n1:K =

∏K
k=1 nk) matrix where state vector (i1, . . . , iK) (ik ∈ {0, . . . , nk−1}) is

mapped onto index i1:K =
∑K
k=1 ik ·nk+1:K (where nl:k =

∏k
i=l nk for k ≥ l and 1
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for l > k). G ≥ 0, G(i1:K•) = 0 if ik /∈ outp(Dk) for some k and G(i1:K•) I1 = 1
otherwise. G(i1:K , j1:K) > 0 implies ik ∈ outp(Dk) and jk ∈ inp(πk) for all
k = 1, . . . ,K which is denoted as i1:K ∈ outp1:K and j1:K ∈ inp1:K , respectively.
The notations may be restricted to subsets of indices k : l for k ≤ l or subset
K ⊆ {1, . . . ,K}. For the cardinalities of the sets we use the following notations
nrK = |outpK| and ncK = |inpK|. Let I1inpn1:K

be a vector of length n1:K where

I1inpn1:K
= 1 if i ∈ inp1:K and 0 otherwise. Similarly I1outpn1:K

is defined. ThenG I1n1:K
=

G I1inpn1:K
= I1outpn1:K

.
The behavior of an MDMAP is as follows. Each of the K absorbing Markov

chains generates a non-negative value, the exit states ik are kept and finally row
G(i1:K•) defines a probability distribution over the input states of each chain.
Dependencies between successive events of one chain and between chains are
realized by the relation between input and output states.

Let π be a vector of length n1:K which contains the distribution immediately
before the next event starts. Let dk = −Dk I1 and the stochastic matrix Hk =
(−Dk)

−1
diag(dk). Observe that Hk(ik, jk) > 0 implies jk ∈ outpk. Vector π

can be computed from the following set of linear equations.

π


 K⊗
k=1

Hk

G
 = π and π I1 = 1, (6)

if the matrix in brackets contains a single irreducible subset of states which will
be assumed for the moment. For some vector π ∈ Rn1:K we define the mapping
onto the kth dimension as vector πk ∈ Rnk with

πk(ik) =

n1−1∑
i1=0

. . .

nk−1−1∑
ik−1=0

nk+1−1∑
ik+1=0

. . .

nK−1∑
iK=0

π(i1:K) (7)

This mapping can be computed by right multiplication of π with the following
matrix.

πk = πVk where Vk =

K⊗
l=1

idl and idl =

{
I1nl

if l 6= k,
Ink

if k = l
(8)

where ⊗ is the Kronecker product. Obviously Vk = I1n1:k−1
⊗ Ink

⊗ I1nk+1:K
. The

mapping can be extended to subsets of components. Let K ⊆ {1, . . . ,K} and

VK =

K⊗
l=1

idl where idl =

{
I1nl

if l /∈ K,
Inl

if l ∈ K. (9)

πK = πVK is the embedded initial vector mapped onto the subset K. For nota-
tional convenience we write Vkl for V{k,l}.

For an initial vector π, the exit vector ψ is given by

ψ = π

 K⊗
k=1

Hk

 and ψk = πkHk. (10)
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ψ and ψk contain the probabilities of absorption from state i1:k and ik, respec-
tively. Obviously, ψk(ik) = 0 for ik /∈ outpk. We assume that ψk(ik) > 0 for
ik ∈ outpk otherwise the corresponding state would not be reachable from an
initial state and can therefore removed from the PHD.

The mapping of matrix G on the state space of some components is defined
according to some exit vector ψ using the following matrix

WK[ψ] = diag (ψVK)
+
V T
K diag(ψ) and GK[ψ] = WK[ψ]GVK (11)

where A+ is the pseudo-inverse of matrix A which can be computed for the
diagonal matrix diag (ψVK) by substituting non-zero diagonal elements by the
inverse and leaving zero diagonal elements unchanged. This is the usual way of
aggregation in multi-dimensional Markov models (see e.g. [13] for details).

Theorem 1. For some MDMAP with K components, coupling matrix G, initial
vector π and any subset K ⊆ {1, . . . ,K}, the initial vector πK of the MDMAP
restricted to the components from K is the solution of

πK


⊗
k∈K

Hk

GK[ψ]

 = πK and πK I1 = 1

where ψ = π ⊗Kk=1Hk.

The number of parameters to represent all matrices Dk only linearly with
K and quadratic with nk. This does not hold for the number of entries in G
which may grow with nc1:Kn

r
1:K . Therefore we consider MDMAPs of rank R with

product form, that can be represented as follows

G =

R∑
r=1

λ(r)
K⊗
k=1

G
(r)
k (12)

where λ(r) > 0,
∑R
r=1 λ

(r) = 1, G
(r)
k ≥ 0 and G

(r)
k I1nk

= I1outpnk
.

Theorem 2. For an MDMAP of rank R with product form and some set K ⊆
{1, . . . ,K} vector πK = πVK is the solution of

πK

⊗
k∈K

Hk

 R∑
r=1

λ(r)
⊗
k∈K

G
(r)
k

 = πK and πK I1nK = 1.

Theorem 2 holds in particular for sets K = {k}. This implies that in a product

form MDMAP each component behaves locally like a MAP(Dk,
∑R
r=1 λ

(r)G
(r)
k ).

4 Analysis of MDMAPs

Analysis of MDMAPs can be performed according to one dimension of the ran-
dom vector or according to the joint distribution.

7



4.1 Analysis of a Single Vector Component

An MDMAP can be easily mapped on a MAP (Dk,Gk) for one vector com-
ponent k that neglects all other dimensions. If the MDMAP is of rank R and

product form, then Gk =
∑R
r=1 λ

(h)G
(r)
k , otherwise Gk = Wk[ψ]GVk. The re-

sulting MAP can then be analyzed with the available methods (see e.g. [12, Sect.
4]).

4.2 Analysis of Joint Measures

In the following we consider mainly dependencies between two dimensions k and
l. In the equations we assume k < l, k > l requires a different ordering of the
matrices in the equations, but does, of course, not change the general structure.
The case k = l describes a single component and is mentioned above. Equations
are formulated for MDMAPs of rank R with product form, matrices G for the
general case are written underneath the rank R representation. Let Jm,n1 (k, l) =

E

[(
X

(t)
k

)m
,
(
X

(t+1)
l

)n]
, the joint moment of order m,n for dimension k and

dimension l, h steps apart. For Jm,n0 (k, l) we obtain

Jm,n0 (k, l) = m!n!πkl
(
(Mk)

m ⊗ (Ml)
n)

I1nknl
(13)

where Mk = (−Dk)
−1

. The joint moment for h = 1 and MDMAPs for rank R
with product form is given by

Jm,n1 (k, l) = m!n!πk,l
(
(Mk)

m ⊗Hl

) R∑
r=1

λ(r)
(

I1nk
⊗G(r)

l

)
︸ ︷︷ ︸

Gkl( I1nl
⊗Inl)

(Ml)
n

I1nl
(14)

For two components k and l the joint distribution is given by

F x,y0 (k, l) = πkl

 x∫
0

eτDkdkdτ ⊗
y∫

0

eτDldldτ

 (15)

For successive observations. F x,y1 (k, l) denotes the conditional probability that
we observe values ≤ x for k and for the next observation zl of dimension l zl ≤ y
holds. The function can be computed using the following equation.

F x,y1 (k, l) = πkl

 x∫
0

eτDk diag (dk) dτ ⊗Hl

 R∑
r=1

λ(r) I1outpnk
⊗G(r)

l︸ ︷︷ ︸
Gkl( I1nl

⊗Inl)

y∫
0

eτDldldτ

(16)

8



Observe that (13) and (15) as well as (14) and (16) are of an identical struc-
ture. Therefore we define a common notation which allows us to handle joint
moments and values of the distributions functions in a common framework. We
denote these measures as zero or first order quantities, respectively. For zero
order joint moments and distribution functions we have

Θα,β
0 (k, l) = πkl

(
φαk ⊗ φ

β
l

)
(17)

where φαl equals α!Mα
l I1nl

or
∫ α
0
eτD0dldτ and Θα,β

0 (k, l) equals Jα,β0 (k, l) or
F x,y0 (k, l), α, β ∈ N for joint moments and α, β ∈ R>0 for joint densities.

Θ̂α,β
0 (k, l) is then the estimated value for Θα,β

0 (k, l). Similarly we can define
a common description of first order joint moments or values of the distribution
function.

Θα,β
1 (k, l) = πkl (Ξ

α
k ⊗Hl)Gk,l

(
I1nl
⊗ φβl

)
(18)

where Θα,β
0 (k, l) equals Jα,β1 (k, l) or F x,y1 (k, l), Θ̂α,β

1 (k, l) is the corresponding
estimate and Ξk equals α!Mα

kHk or
∫ α
0
eτDk diag(dk)dτ .

5 Moment-Based Parameter Fitting

We consider different approaches to determine the parameters of an MDMAP
based on moments, joint moments and joint values of the probability densities.
For the methods we distinguish between general MDMAPs and MDMAPs of
rank R with product form. The approaches are based on algorithms that have
been proposed for MAPs and MMAPs [12, 9, 19]. In all cases we start with the

computation of a PHD (πk,Dk) from the observations x
(l)
k (l = 1, . . . , L). For

this purpose any algorithm for parameter fitting of PHDs can be applied, the
resulting PHD can be further transformed to increase the number of input and
output states using equivalence transformations [8]. The corresponding approach
is denoted as two-phase fitting approach [19] and sometimes becomes a three-
phase approach in this paper. The computation in different phases allows one
to formulate the resulting optimization problems as non-negative least squares
problem with linear constraints that can be solved efficiently. Furthermore, it is
a common approach used for the parameter fitting of multivariate distributions
in general [5]. Most fitting methods for multivariate distributions use Ĵ1,1

0 (k, l)

and Ĵ1,1
1 (k, l) as measures to be matched by the multivariate distribution which

is often a multivariate normal distribution. This is sometimes criticized [3, 4] and
other measures like the joint tail behavior of two components are considered. In
the following approaches measures such as Ĵm,n0 (k, l), F̂ x,y0 (k, l) (i.e., Θ̂α,β

0 (k, l))

and Ĵm,n1 (k, l), F̂ x,y1 (k, l) (i.e., Θ̂α,β
1 (k, l)) are incorporated in the fitting process.

We do not consider dependencies of lags larger than 1 like Ĵ1,1
p (k, l) (p > 1) which

are used in VARTA processes [6, 21].
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5.1 Dependencies in a Single Component

For a single component the zero and first order quantities are given by

Θα
0 (k, k) = πkφ

α
k and Θα,β

1 (k, k) = ξαkGkφ
β
k (19)

where ξαk = πkΞ
α
k . Observe that Θα

0 (k, k) has only a single parameter α and is

completely determined by the PHD (πk,Dk). To describe Θα,β
1 (k, k) we expand

the PHD into a MAP (Dk,Gk) (see [12, 19]). Now assume that we have Hk

estimates Θ̂αi,βi

1 (k, k) which should be approximated by (Dk,Gk). Computation
of matrix Gk results then in the following Non-Negative Least Squares Problem
with Linear Constraints (NNLSPLC) [25].

min
Gk≥0

(
Hk∑
i=1

µi

(
Θ̂αi,βi

1 (k, k)− ξαi

k Gkφ
βi

k

)2)
subject to Gk I1inpnk

= I1outpnk
,ψkGk = πk

(20)

where µi are non-negative weights for the different joint moments/densities. The
problem has nckn

r
k variables and nrk + nck constraints. The number of non-zero

elements in Gk is at most nrkn
c
k but often the optimal solution describes a corner

case with less non-zero elements. In some situations, it is better to have some
more non-zero elements to allow more flexibility for following optimization steps.
This can be achieved by adding a penalty term λ‖Gk‖2 to the objective function.
In this case a matrix with more and smaller non-zero elements results in a smaller
two norm. This step can be applied in all NNSPLCs we present in the following
paragraphs.

5.2 Joint Moment Fitting for General MDMAPs

For general MDMAPs we put no restriction on matrix G which means that
nc1:Kn

r
1:K variables are available. However, some constraints exist. First, for the

row sums G(i1:K•) I1 = 1 for i1:K ∈ out1:K and 0 otherwise has to hold. Further-
more, G determines π because (6) has to hold for given matrices Hk. Addition-
ally, the availability of the distributions (πk,Dk) implies that πVk = πk has to
hold.

The parameter fitting is done in two steps. First, vector π is determined to
approximate quantities Θ̂αi,βi

0 (ki, li) (i = 1, . . . , I0). Then an appropriate matrix

G is determined to approximate additional values Θ̂αi,βi

1 (ki, li) (i = 1, . . . , I1).
We begin with the computation of π from the zero order quantities. Let

u(i) = Vkl

(
φαi

ki
⊗ φβi

li

)
. E.g., if all first joint moments J1,1

0 (k, l) are considered,

then (K−1)K/2 vectors Vkl
(
m1
k ⊗m1

l

)
(k < l) are used. Then Θαi,βi

0 = πu(i).
With these notations we can set up the following NNLSPLC.

min
π≥0

(
I0∑
i=1

µi

(
Θ̂αi,βi

0 (ki, li)− πu(i)
)2)

subject to π I1 = 1,π ≥ 0 and πVk = πk for all k = 1, . . . ,K

(21)
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Again µi are appropriate non-negative weights. If the minimum of the objective
function becomes 0, then all joint moments and conditional values of the distri-
bution function are matched exactly. The result is a set of PHDs coupled via
initial vector π that generate random vectors. Vector π contains n1:K elements
of which are at most nr1:K are non-zero.

To match estimated values Θ̂αi,βi

1 (ki, li) (i = 1, . . . , I1), we assume that the
vector π is available (e.g. from (21)). This implies that ψ = π ⊗Kk=1 Hk is
also available. The optimization problem for general matrices G results in the
following NNLSPLC.

min
G≥0

(
I1∑
i=1

µi

(
Θ̂αi,βi

1 (ki, li)−w(i)Gv(i)
)2)

subject to G I1inpn1:k
= I1outpn1:K

and ψG = π

(22)

where

w(i) = π
(
In1:ki−1

⊗Ξαi

ki
⊗ Inki+1:K

) K∏
j=1,j 6=ki

(
In1:j−1

⊗Hj ⊗ Inj+1:K

)
v(i) = I1n1:li−1

⊗ φβi

li
⊗ I1nli+1:K

The problem contains nc1:Kn
r
1:K non-zero variables, after removing zero elements

from G, but has relatively simple equality constraints.

5.3 Joint Moment Fitting for MDMAPs of Rank R with Product
Form

We begin with the generation of product form MDMAPs of rank R. As long as
we consider the approximation of quantities Θ̂α,β

0 (k, l) Theorem 2 applies and
allows us to compute the distribution πkl from the matrices for components
k and l, independently of the remaining components. Unfortunately, the joint

computation of the matrices G
(r)
k and G

(r)
l results in a non-linear optimization

problem which is hard to solve. To keep the optimization manageable, we use
Alternating Least Squares (ALS) [22] which is a common approach applied in
many areas including the solution of partial differential equations [16, 17] or
performance models [10]. The basic idea of the approach is fairly simple. It is

assumed that matrices G
(r)
l (l ∈ {1, . . . ,K}\{k}, r = 1, . . . , R) are known when

matrices G
(r)
k are computed. Then new matrices are computed for k = 1, . . . ,K

and the iteration is repeated until convergence is observed. Some results about
local convergence of the approach exist [30] and also hold in our setting, but will
not be further analyzed.

To start with the computation we assume that initial matrices G
(r)
k are avail-

able. Matrices Gk result from the solution of (20) or are initialized as I1outpnk
πk.

Then a random distribution (λ(1), . . . , λ(R)) with 0 < λ(r) < 1 and
∑R
r=1 λ

(r) = 1
is generated. The result is an MDMAP of rank R with product form but different
components are uncorrelated.
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To introduce correlation between two components k and l, we consider quan-
tities Θ̂αi,βi

0 (k, l) (i = 1, . . . , Ikl0 ) which results in the following NNLSPLC.

min
πkl≥0

Ikl
0∑
i=1

µi

(
Θ̂αi,βi

0 (k, l)− πkl
(
φαi

k ⊗ φ
βi

l

))2


subject to πkl I1 = 1,πkl
(

I1nk
⊗ Inl

)
= πl and πkl

(
Ink
⊗ I1nk

)
= πl

(23)

Up to K(K − 1)/2 NNLSPLCs of the above type have to be solved. From the
resulting vectors πkl the vectors ψkl = πkl (Hk ⊗Hl) can be computed.

In the next step matrices G
(r)
k have to be found such that the vectors com-

puted in (23) are the embedded stationary vectors of the two components. Due
to the product form it is sufficient to consider only the relation between two com-
ponents if we restrict dependencies to joint moments or densities between two

components. Let Ḡ
(r)
k = λ(r)G

(r)
k . If we consider the local optimization problem,

where matrices Ḡ
(r)
k are unknown and matrices G

(r)
l (l 6= k) are known, we have

to find matrices such that

ψkl

 R∑
r=1

Ḡ
(r)
k ⊗G

(r)
l

 = πkl (k < l) and ψlk

 R∑
r=1

G
(r)
l ⊗ Ḡ

(r)
k

 = πkl (k > l)

(24)
This can be describes in the following NNLSPLC.

min
Ḡ

(1)
k ,...,Ḡ

(R)
k ,λ(1),...,λ(R)≥0

k−1∑
l=1

∥∥∥∥∥πlk −ψlk R∑
r=1

(
G

(r)
l ⊗ Ḡ

(r)
k

)∥∥∥∥∥
2

2

+
K∑

l=k+1

∥∥∥∥∥πkl −ψkl R∑
r=1

(
Ḡ

(r)
k ⊗G

(r)
l

)∥∥∥∥∥
2

2

+
∑

(h,l),h<l,h,l 6=k

∥∥∥∥∥πhl −ψhl R∑
r=1

λ(r)
(
G

(r)
h ⊗G

(r)
l

)∥∥∥∥∥
2

2


subject to

R∑
r=1

Ḡ
(r)
k I1 = I1,ψk

R∑
r=1

Ḡ
(r)
k = πk, for all i : Ḡ

(r)
k (i•) I1 = λ(r)

(25)
If matrices Gk are available from (20), then the second set of constraints can

be substituted by
∑R
r=1G

(r)
k = Gk. In this case, a solution assures that val-

ues Jm,n1 (k, k) are kept by the resulting MDMAP. The optimization problem is
solved for k = 1, . . . ,K and this process is iterated until the objective function
becomes 0 for all components or no progress is made any more. Observe that a
solution of (25) cannot increase the overall error defined as

K∑
k=1

K∑
l=k+1

∥∥∥∥∥∥πkl −ψkl
 R∑
r=1

λ(r)
(
G

(r)
k ⊗G

(r)
l

)∥∥∥∥∥∥
2

2

. (26)

12



If the global error cannot be reduced to 0, then vectors πkl have to be computed
for the resulting MDMAP from which the joint moments and joint densities can
be recomputed.

6 Examples

In the following we consider different examples for MDMAPs. First, random
vectors where the components of one vector are correlated and subsequent vec-
tors are independent are considered, then random vectors which with correlation
between components of one vector and of subsequent vectors are analyzed.

6.1 Independent Random Vectors

We begin with random vectors with correlated components. A first simple ex-
ample are two correlated exponential distributions. We consider exponential dis-
tributions with rate 1 and correlation coefficient R1(1, 2) = R1(2, 1) = 0.5. To
build correlated exponential distributions, the following representation as PHD
with n phases is used [7].

π =
(
n−1, . . . , n−1

)
D =


−1 1
−2 2

. . .
. . .

−n

 (27)

To obtain a coefficient of correlation of 0.5 at least 5 phases are needed. Observe
that in the representation (27) the expected time to absorption is decreasing
when entering the distribution at a state with larger index. To obtain a posi-
tive correlation if two distributions are coupled, both distributions have to start
with a higher probability in the same state. In an MDMAP with two exponen-
tial PHDs of order 5, the joint initial vector has 25 entries. Let π(i, j) be the
probability that the MDMAP starts in phase i of the first and phase j of the
second MDMAP. For independent PHDs the probability is n−2 for each state,
the coefficient of correlation is 0 in this case. By solving (21) we obtain an ini-
tial vector with only 7 non-zero entries, namely π(1, 1) = π(5, 5) = 0.1902,
π(2, 2) = π(3, 3) = π(4, 4) = 0.2 and π(1, 5) = π(5, 1) = 0.00998. The result-
ing MDMAP describes two exponential distribution with rates 1 and correlation
coefficient 0.5.

In exactly the same way random vectors with several correlated exponen-
tially distributed components can be generated. It should be mentioned that
even in simulation the generation of high dimensional random vectors of corre-
lated exponential distributions is non-trivial. We applied the method from [6,
14] which transforms correlated standard normal distributed random vectors into
exponential distributions. We consider the case of three correlated exponential
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distributions all with mean 1 and the following two correlation matrices.

R0 =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 and R′
0 =

 1 0.5 0.1
0.5 1 0.3
0.1 0.3 1


Again we use the above representation with 5 states for the exponential distri-
bution. Thus, the joint state space contains 125 states. For the first correlation
matrix the algorithm generates an initial vector with 64 non-zero entries that
exactly matches the correlation structure. For the second correlation matrix the
function lsqlin of octave or matlab generates an MDMAP with the following
correlation matrix.

R̂0 =

1.00000 0.4965 0.1011
0.4965 1.00000 0.2987
0.1011 0.2987 1.00000


This is very near to the required correlation but not exactly the same. Interest-
ingly in the resulting initial vector only 14 of the 125 entries are non-zero (if we
set values smaller than 1.0e− 8 to zero).

If we use a product form approximation, then a rank of 4 is required to
approximate matrix R0 with a relative error of less than 1%. The correlation
described by R′

0 could not be approximated with a small approximation error
using a product form representation.

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

f(
x
)

x

HErl5
HErl9
trace

Fig. 1. Densities of the log-normal and the fitted Hyper-Erlang distributions.

As a second example we consider log-normal distribution with means and
standard deviation 1. In a first step 10, 000 samples are drawn from the dis-
tribution and are used to fit a Hype-Erlang distribution using the software gfit
[33]. Figure 1 show the empirical density of the trace and the densities of hyper-
Erlang distributions with 5 and 9 states. It can be noticed that both Hyper-
Erlang distributions provide a good matching of the empirical density. The 5
state Hype-Erlang distribution consists of 3 Erlang branches, one with 1 phase
and the other two with 2 phases. The 9 state Hyper-Erlang distribution contains
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4 branches, one with 1 phase, 1 with 2 phases and 1 with 3 phases. Combining
two Hyper-Erlang distributions with 5 phases allows us to express a correlation
coefficient up to 0.3 whereas 9 phases allow one to model correlation coefficients
up to 0.4. If we combine the Hyper-Erlang distribution with 9 phases, modeling
the log-normal distribution and the PHD with 5 states representing the expo-
nential distribution, coefficients of correlation between −0.29 and 0.34 can be
achieved. To obtain larger coefficient of correlation additional phases have to be
added.

If we consider product from representations for the MDMAP with two 9-state
hyper-Erlang distributions, then for R1,1

0 (1, 2) = 0.1 and 0.2 rank 5 represen-
tations are computed, whereas for R1,1

0 (1, 2) = 0.3 a rank 3 representation is
generated.

6.2 Random Processes

We consider again correlated exponential distributions. With the representation
of (27) it is not possible to model correlations between subsequent realization
because the representation has only a single output state. If we enlarge the num-
ber of phases by using a Hyper-Erlang representation where each path starting
in phase i (= 1, . . . , n) and ending in phase n is modeled by a single Erlang
branch, we obtain a distribution with n(n+ 1)/2 phases, n input and n output
states. We analyze an MDMAP with 2 distributions with n = 5 . The correlation
coefficient reachable by these distribution ranges between −0.46 and 0.54.

max(R1(1, 1) min(R1(1, 1)) max(R1(1, 1)) min(R1(1, 1))
max(R1(1, 2)) min(R1(1, 2)) min(R1(1, 2)) max(R1(1, 2))

R0(1, 2) R1(1, 1) R1(1, 2) R1(1, 1) R1(1, 2) R1(1, 1) R1(1, 2) R1(1, 1) R1(1, 2)

−0.40 0.17 0.17 −0.17 −0.17 0.53 −0.44 −0.44 0.53
−0.30 0.23 0.23 −0.24 −0.24 0.50 −0.40 −0.40 0.50
−0.20 0.28 0.28 −0.28 −0.28 0.46 −0.38 −0.38 0.46
−0.10 0.32 0.32 −0.31 −0.31 0.43 −0.34 −0.34 0.43
0.00 0.36 0.36 −0.34 −0.34 0.40 −0.30 −0.30 0.40
0.10 0.40 0.40 −0.36 −0.36 0.36 −0.26 −0.26 0.36
0.20 0.43 0.43 −0.38 −0.38 0.32 −0.22 −0.22 0.32
0.30 0.47 0.47 −0.40 −0.40 0.27 −0.17 −0.17 0.27
0.40 0.49 0.49 −0.42 −0.42 0.21 −0.11 −0.11 0.21
0.54 0.54 0.54 −0.46 −0.46 0.05 0.04 0.04 0.05

Table 1. Maximal and minimal reachable correlation coefficients.

To analyze the flexibility of the representation, we first select some value
for R0(1, 2) and compute the corresponding vector π by solving (21). Then we
try to maximize/minimize R1(1, 1) and R1(1, 2). If we maximize/minimize only
one of the two values, then independently of R0(1, 2) the values for R1(1, 1) and
R1(1, 2) can range between −0.45 and 0.54, the maximum range reachable by
this distribution. If we try to jointly maximize/minimize R1(1, 1) and R1(1, 2),
then the range shrinks and depends on R0(1, 2). Results are shown in Table 1
and indicate that there is still a lot flexibility in the representation. The solution
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of the NNLSPLC problems for this examples requires with matlab on a standard
PC less than a second.

Finally we consider an MDMAP with three PHDs of the mentioned type. The
joint state space of this process contains 153 states, 125 input and 125 output
states. We define the following two matrices for the correlation of lag 0 and 1

R0 =

 1 0.5 0.1
0.5 1 0.3
0.1 0.3 1

 and R1 =

0.3 0.2 0.1
0.2 0.3 0.2
0.1 0.2 0.3


In a first step the initial vector is computed and then matrix G is determined
resulting in an MDMAP with the following matrices R̂0 (which is already shown
above) and R̂1.

R̂0 =

1.00000 0.4965 0.1011
0.4965 1.00000 0.2987
0.1011 0.2987 1.00000

 and R̂1 =

0.2636 0.2341 0.0912
0.2341 0.2692 0.2072
0.0912 0.2072 0.2987


It can be seen that the correlation structure is approximated with small approx-
imation errors. The computation of the initial vector requires negligible time,
whereas the solution of the second NNLSPLC problem to determine matrix G
requires about an hour of CPU time.

7 Conclusion

In this paper we present MDMAPs, a Markov model for random vectors that
may be correlated in different dimensions and extends Phase Type Distributions
and Markovian Arrival Processes to the multi-dimensional case. It is shown
how MDMAPs can be analyzed and algorithms are presented to fit the parame-
ters of MDMAPs according to joint moments or some values of the conditional
distribution function. The proposed model can be applied in input modeling
for simulation models where it is an alternative for models that are based on
transformed correlated normal distributions. These models usually only use the
correlation coefficient to describe dependencies whereas MDMAPs can also use
higher order joint moments or values of the conditional distribution function
which introduces additional flexibility when real data has to be represented by
a stochastic model. Since MDMAPs are Markov models they can be analyzed
numerically and can also be used as a stochastic model for correlated failures
in dependability models or to represent correlated arrivals and service times in
queues with PHD arrivals and services as in [11].

We currently have a first prototype matlab implementation of the algorithms
proposed in the paper. This representation will be further improved and then
made publically available in the tool ProFiDo [2]. Apart from parameter fitting
with respect to moments and joint moments also an EM algorithm for MDMAPs
will be considered in future research.
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A Proofs of the Theorems

We use the following vectors I1inpnK where I1inpnK (iK) = 1 for iK ∈ inpK and 0

otherwise. Similarly, I1outpnK where I1outpnK (iK) = 1 for iK ∈ outpK and 0 otherwise.

Observe that πK(iK) > 0 ⇔ I1inpnK (iK) = 1 and dK(iK) > 0 ⇔ ψK(iK) > 0 ⇔
I1outpnK (iK) = 1. Furthermore the following results for the matrices G and H hold.

HK(iK, jK) > 0⇒ jK ∈ outpK,
HK I1nK = HK I1outpnK = I1nK ,GK I1nK = GK I1inpnK = I1outpnK ⇒HKGK I1nK = I1nK

Proof of Theorem 1

We have to show

πVK


⊗
k∈K

Hk

GK[ψ]

 = πK.

First oberseve that

πVK

⊗
k∈K

Hk

 = π

 K⊗
k=1

Hk

VK = ψVK

because VK = ⊗Kk=1idk with idk = I1nk
for k /∈ K and idk = Ink

for k ∈ K,
Hk I1nk

= I1nk
and HkInk

= Ink
Hk. Thus, it remains to show

ψVKGK = ψVK diag (ψVK)
+
V T
K diag (ψ)GVK = πK.

The equation holds since ψVK = ψK, ψ diag (ψ)
+

=
(

I1outpnK

)T
,
(

I1outpnK

)T
V T
K =

x where
(

I1outpn1:K

)T
≤ x ≤

(
I1n1:K

)T
such that

ψ =
(

I1outpn1:K

)T
diag (ψ) ≤ x diag (ψ) ≤

(
I1n1:K

)T
diag (ψ) = ψ

which completes the proof.

Proof of Theorem 2

The mapping of vector π onto πK is realized by multiplication with matrix
VK = ⊗Kk=1idk where idk = I1nk

for k /∈ K and Ink
for k ∈ K. Furthermore, the

following relations hold.

Hk

(
R∑
r=1

λ(r)G
(r)
k

)
I1nk

= Hk I1outpnk
= I1nk

and

Hk

(
R∑
r=1

λ(r)G
(r)
k

)
Ink

= Ink
Hk

(
R∑
r=1

λ(r)G
(r)
k Ink

)
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It follows by basic properties of Kronecker products

πk = π

 K⊗
l=1

Hl

 R∑
r=1

λ(r)

(
K⊗
l=1

G
(r)
l

)
Vk

= π

 K⊗
l=1

Hl

 R∑
r=1

λ(r)

(
K⊗
l=1

G
(r)
l

) idk


= π

(
K⊗
k=1

idk

) K⊗
l=1

Hl

 R∑
r=1

λ(r)

(
K⊗
l=1

G
(r)
l

)


= πk

 K⊗
l=1

Hl

 R∑
r=1

λ(r)

(
K⊗
l=1

G
(r)
l

)


(28)

B Proofs of basic Equations

Proof of Equation (6)

Assume that the kth component is started with initial vector πk and is described
by sub-generator Dk. Then (

Dk diag(dk)
0 0

)
describes the absorbing behavior of the process. The process will eventually end
up in a state in the second block and it ends in the ith state of the second block, if
state i of the first block is the exit from the first block (i.e., the state immediately

before absorption). Thus, matrix Hk = (−Dk)
−1

diag(dk) is a stochastic matrix
that includes in position Hk(i, j) the conditional probability that the process, if
started in state i, will exit from state j. This follows from standard results for
absorbing continuous time Markov chains (CTMCs) [20].

Since all K absorbing processes are running independently and in parallel
after being started, the matrix

H =

K⊗
k=1

Hk

describes the joint behavior, i.e., it maps initial state i1:K onto a joint state j1:K
where jk is the state in component k just before absorption. Observe that H is a
stochastic matrix and H(i1:K , j1:K) > 0 implies j1:K ∈ outp1:K . Then HG is a
matrix that describes the embedded process which is observed immediately be-
fore a new start of the absorbing Markov chain. Consequently, HG(i1:K , j1:K) >
0 implies i1:K ∈ inp1:K and j1:K ∈ outp1:K and

∑
j1:K∈outp1:K HG(i1:K , j1:K) =

20



1 for i1:K ∈ inp1:K and 0 if i1:K /∈ inp1:K . If matrix HG contains a single
irreducible subset of states, then its stationary vector describes the embedded
stationary distribution immediately before the start of the absorbing Markov
chains.

Proof of Equation (10)

By definition ψVk = ψk. Then we have

π

(
K⊗
l=1

Hl

)
Vk = π

(
K⊗
l=1

Hl

)(
I1n1:k−1

⊗ Ink
⊗ I1nk+1:K

)
= π

(
I1n1:k−1

× Ink
⊗ I1nk+1:K

)
Hk = πkHk

which follows because all matrices Hl are stochastic.

Proof of Equation (13)

For an absorbing CTMC with sub-generator D and initial distribution π, the
mth moment of absorption is given by m!π(−D)−m I1 (see [12, 20]). In our case
we have two absorbing CTMCs and consider the product of the mth and n
moments of absorption time. Let ik, il be the initial state, then the conditional
absorption times are given by m!(Mk)m(ik•) I1nk

and n!(Ml)
n(il•) I1nl

. The initial
probability of this state is given by πkl(ik, il)

3. Thus,

Jm,n0 (k, l) =

nk−1∑
i=0

nl−1∑
j=0

πkl(i, j)m!n!(Mk)m(i•) I1nk
(Ml)

n(j•) I1nl

which is just another representation of (9).

Proof of Equation (14)

The equation follows since G
(r)
k I1nk

= I1outpnk
and Hk I1outpnk

= I1nk
.

Proof of Equation (16)

In the first part the distribution of exit states up to time x is considered for
k whereas no restriction is put on component l. This implies that the integral

3 For notational convenience we use the two dimensional numbering of states which
can be mapped on iknl + il if k < l or ilnk + il if k > l.
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defines the exit distribution of k and the exit distribution of l is given by multi-
plication with Hl. Let π′

kl be the resulting vector. Then we have

π′
kl

 R∑
r=1

λ(r)G
(r)
k ⊗G

(r)
l


︸ ︷︷ ︸

Gkl

(
Hk ⊗

y∫
0

eτDl diag (dl) dτ

)
I1nknl

=

π′
kl

 R∑
r=1

λ(r) I1outpnk
⊗G(r)

l


︸ ︷︷ ︸

Gkl( I1nl
⊗Inl)

(
y∫
0

eτDldldτ

)
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