

Dipl.-Math. Dipl.-Inform. Ingo Schulz Dipl.-Inform. Christoph Borchert Wintersemester 2011/12

Rechnernetze und verteilte Systeme Übungsblatt 6

Ausgabe: 14. November, Besprechung: 22.-25. November, keine Abgabe

Aufgabe 6.1

Mechanismen zur Unterstützung zuverlässiger Übertragungen, die bestimmte Fehlerarten behandeln, lassen sich tabellarisch zusammenfassen.

Fehlerart	Fehlererkennung	Fehlerbehebung
Verfälschung	Fehlererkennende Codes	Wiederholung oder Fehler-
	z. B. Prüfsummen	korrigierende Codes (FEC)
Verlust		
Duplikate		
Phantomnachricht		
Vertauschung		

- 1. Ergänzen Sie die Tabelle.
- 2. Welche in der Vorlesung vorgestellten Protokolle (rdt 1, rdt 2,...) behandeln welche Fehlerarten?

Aufgabe 6.2

In der Vorlesung fand eine kritische Auseinandersetzung mit der von Kurose und Ross verwendeten Syntax für Automaten, die Protokoll-Instanzen beschreiben, statt. Eine konsistente formale Syntax für einen erweiterten Mealy-Automaten finden Sie in der Aufgabenstellung einer alten Klausur, s. Abb 1.

Bearbeiten Sie die Aufgabe.

Anmerkung: Die angegebenen 15 Punkte waren in der Klausur zu erreichen und werden in den $\overline{\text{Ubungen nicht vergeben}}$:)

Vorlesung: http://ls4-www.cs.tu-dortmund.de/cms/de/lehre/2011_ws/rvs/

Übung: http://ls4-www.cs.tu-dortmund.de/cms/de/lehre/2011_ws/rvs_uebung/

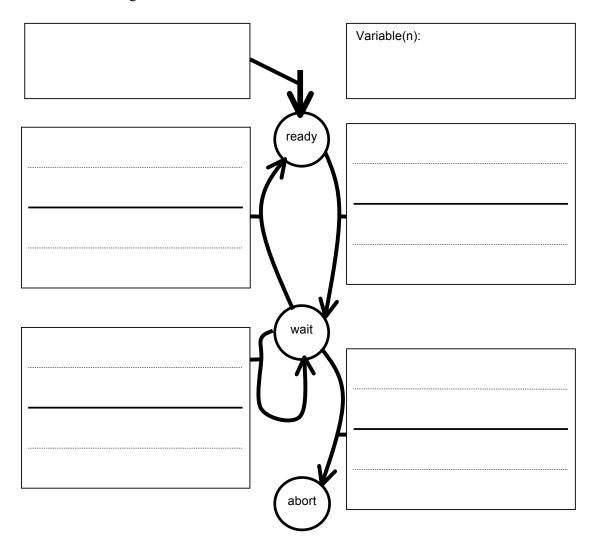
Transportsystem und Protokolle, Erweiterter Mealy-Automat

[15 Punkte]

Gegeben ist ein Szenario, in welchem eine Transportprotokoll-Instanz S Nutzdaten an eine entfernte Transportprotokoll-Instanz E zu übertragen hat.

Der Netzdienst kann Pakete verlieren. Die Kombination aus positiver Quittierung, Zeitüberwachung und Wiederholung wird in Stop-and-Go-Version zur Verlust-Fehlerbehandlung eingesetzt. Wenn ein Datum dreimal erfolglos gesendet wurde, bricht die Instanz S ihre Aktivitäten ab. Andere Mechanismen sind nicht vorgesehen. Wir abstrahieren von der Adressierung der Netzdienst-Pakete und betrachten nur deren Nutzdaten *tpdu*. Dort abstrahieren wir von den genauen PDU-Formaten. Für Pakete von S nach E gelte *tpdu*="zu sendendes Nutzdatum d". Für Pakete von E nach S gelte *tpdu*="ACK". Die Instanz S hat folgende Eingaben:

TDatReq(d) Übergabe des Datums d von Anwendungsprozess an S
NDatInd(tpdu) Übergabe des empfangenen Datums pdu von Netzdienst an S
TimerAlert Der Kurzzeitwecker signalisiert den Ablauf der Weckzeit


Die Instanz S hat folgende Ausgaben:

TAbortInd Abbruch-Anzeige der Instanz S an Anwendungsprozess NDatReq(*tpdu*) Übergabe des zu sendenden Datums *pdu* von S an Netzdienst

TimerStart Befehl zum Start des Kurzzeitweckers (ein aktiver Wecker wird zuvor angehalten)

TimerStop Befehl zum Anhalten des Kurzzeitweckers

Das Verhalten von S soll an Hand von folgendem erweiterten Mealy-Automaten beschrieben werden. Vervollständigen Sie die Variablendefinition, Initialisierungsbedingung und Transitionsklausen im Diagramm!

