

Dipl.-Math. Dipl.-Inform. Ingo Schulz

Dipl.-Math. Jens Lechner

Sommersemester 2012

Mathematik für Informatiker 2 Übungsblatt 5

Ausgabe: 23. April, Abgabe: 30. April, 14 Uhr, Block A

Bitte schreiben Sie auf Ihre Abgabe Namen, Matrikelnummer und Gruppe auf. Die Abgabe werfen Sie bitte in den passenden Briefkasten (auf Gruppennummer achten!) in der Otto Hahn Straße 20 ein.

Aufgabe 5.1 (4 Punkte)

Sei (a_n) eine reelle Folge. Zeigen Sie:

$$(a_n)$$
 konvergiert $\Leftrightarrow \exists C > 0 \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |a_n - a| \leq C \cdot \varepsilon$

Aufgabe 5.2 (4 Punkte)

Berechnen Sie die Grenzwerte der Folgen. Begründen Sie Ihre Zwischenschritte.

- 1. $(a_n) = \frac{2-n+3n^2}{4+7n^2}$
- 2. $(a_n) = \frac{1+2+...+n}{n^2}$
- 3. $(a_n) = n^2 \sqrt{n^4 + 20n^2 + 7}$ (Sie dürfen benutzen, dass wenn eine Folge $(b_n) > 0$ konvergiert, dass dann auch die Folge $((\sqrt{b_n})_n)$ konvergiert).

Aufgabe 5.3 (4 Punkte)

Es seien (a_n) und (b_n) zwei divergente Folgen. Zeigen oder widerlegen Sie, dass dann folgt:

- 1. $((a_n \cdot b_n)_n)$ ist divergent.
- 2. $((a_n + b_n)_n)$ ist divergent.
- 3. $((c \cdot a_n)_n)$ mit $c \neq 0$ ist divergent.

Präsenzaufgabe 5.4

Zeigen Sie, dass folgende Aussage (*) äquivalent zum Cauchy-Kriterium der Vorlesung ist:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \ge n_0 : |a_n - a_m| < \varepsilon$$
 (*)

 $\label{lem:constraint} Vor lesung: \ http://ls4-www.cs.tu-dortmund.de/cms/de/lehre/2012_ss/mathe2/index.html \\ \ddot{U} bung: \ http://ls4-www.cs.tu-dortmund.de/cms/de/lehre/2012_ss/mathe2_uebung/index.html \\ \ddot{U} bung: \ http://ls4-www.cs.tu-dortmund.de/lehre/2012_ss/mathe2_uebung/index.html \\ \ddot$