Peter Buchholz, Jan Kriege

Sommersemester 2015

Modellgestützte Analyse und Optimierung Übungsblatt 13

Ausgabe: 29.06.2015, Abgabe: 06.07.2015 (12 Uhr)

Aufgabe 13.1: (4 Punkte)

Skizzieren Sie im \mathbb{R}^2 jeweils ein Beispiel für ein lineares Programm mit

- a) einem eindeutigen Optimum bei unbeschränktem zulässigen Bereich;
- b) einem eindeutigen Optimum bei beschränktem zulässigen Bereich;
- c) mehreren Optima;
- d) keinem Optimum bei nicht leerem zulässigen Bereich.

Aufgabe 13.2: (3 Punkte)

Geben Sie notwendige und hinreichende Kriterien für s und t an, so dass das folgende lineare Programm

$$max x_1 + x_2 \tag{1}$$

$$u.d.N. sx_1 + tx_2 \le 1 \tag{2}$$

$$x_1, x_2 \ge 0 \tag{3}$$

- a) mindestens eine optimale Lösung hat,
- b) genau eine optimale Lösung hat,
- c) keine zulässige Lösung hat,
- d) unbeschränkt ist.

Aufgabe 13.3: (5 Punkte)

Sei folgende Instanz des Rucksackproblems gegeben:

Gegenstand j	1	2	3	4	5	6
Wert c_j	8	8	6	10	12	12
Gewicht a_j	1	2	2	4	6	10
Relativer Wert $\frac{c_j}{a_j}$	8	4	3	2.5	2	1.2

Für das nicht überschreitbare Gesamtgewicht gilt A=12. Berechnen Sie eine zulässige Lösung x_H sowie deren Zielfunktionswert F_H mittels Greedy-Heuristik.

Nehmen Sie an, dass es eine optimale Lösung \boldsymbol{x}^* mit $x_1^*=1$ und $x_6^*=0$ gibt. Wir nummerieren die verbliebenen Gegenstände um, so dass x_j, c_j und a_j für j=2,...,5 zu x_{j-1}, c_{j-1} und a_{j-1} werden. Dies ergibt die Daten in der unten angegebenen Tabelle mit dem maximalen Gesamtgewicht A=11. Den Vektor mit den "neuen Komponenten" x_1,\ldots,x_4 bezeichnen wir mit $\hat{\boldsymbol{x}}$ im Unterschied zum Vektor \boldsymbol{x} mit den "alten Komponenten" x_1,\ldots,x_6 .

Gegenstand j	1	2	3	4
Wert c_j	8	6	10	12
Gewicht a_j	2	2	4	6
Relativer Wert $\frac{c_j}{a_j}$	4	3	2.5	2

Listen Sie die einzelnen Iterationsschritte des Branch-and-Bound-Verfahrens auf und zeigen Sie den im Laufe des Verfahrens abgearbeiteten Suchbaum. Starten Sie dabei mit der zulässigen Anfangslösung $\hat{x}_H = (1,1,1,0)^T$, die sich durch "Reduktion" der mit der Greedy-Heuristik erhaltenen Anfangslösung $x = (1,1,1,1,0,0)^T$ ergibt. Dabei ist die Schrankenfunktion durch $b(s) = \sum_{j \in J(s)} c_j + Z_{LP(s)}$ gegeben,

s ist ein Knoten im Suchbaum, $x_1, \ldots, x_{h(s)}$ die fixierten Variablen (und damit h(s) die Tiefe von s im Suchbaum) sowie $J(s) \subseteq \{1, ..., h(s)\}$ die Menge der Indizes der (gleich 1) gesetzten Variablen.