
Analysis of Markov Decision Processes under
Parameter Uncertainty Online Companion

Peter Buchholz, Iryna Dohndorf, and Dimitri Scheftelowitsch

Department of Computer Science, TU Dortmund
{peter.buchholz,iryna.dohndorf,dimitri.scheftelowitsch}@cs.tu-dortmund.de

Abstract. Markov Decision Processes (MDPs) are a popular decision
model for stochastic systems. Introducing uncertainty in the transition
probability distribution by giving upper and lower bounds for the transi-
tion probabilities yields the model of Bounded Parameter MDPs (BMDPs)
which captures many practical situations with limited knowledge about a
system or its environment. In this paper the class of BMDPs is extended
to Bounded Parameter Semi Markov Decision Processes (BSMDPs). The
main focus of the paper is on the introduction and numerical compari-
son of different algorithms to compute optimal policies for BMDPs and
BSMDPs; specifically, we introduce and compare variants of value and
policy iteration.
The paper delivers an empirical comparison between different numerical
algorithms for BMDPs and BSMDPs, with an emphasis on the required
solution time.

Keywords: (Bounded Parameter) (Semi-)Markov Decision Process, Dis-
counted Reward, Average Reward, Value Iteration, Policy Iteration

1 Algorithms

1.1 Solution methods for MDPs

2 Peter Buchholz, Iryna Dohndorf, Dimitri Scheftelowitsch

Algorithm 1 Value iteration for discrete-time MDPs with discounted reward
criterion

Require: MDP (S,A, (P a)a∈A, (r
a)a∈A,p), discount factor γ;

1: Specify v(0) ≥ 0, ε > 0 and set k = 0;
2: repeat
3: for i ∈ S do
4: v(k+1)(i) = maxa∈A

(
ra(i) + γ

∑
j∈S P

a(i, j)v(k)(j)
)

;

5: k = k + 1;

6: until
∥∥∥v(k−1) − v(k)

∥∥∥ < ε 1−γ
2γ

7: Choose π(i) ∈ arg maxa∈A
(
ra(i) + γ

∑
j∈S P

a(i, j)v(k)(j)
)

for all i ∈ S;

8: return An ε-optimal policy π, value vector v(k);

Algorithm 2 Value iteration for discrete-time MDPs with expected total reward
criterion

Require: MDP (S,A, (P a)a∈A, (r
a)a∈A,p);

1: Specify v(0) ≥ 0, ε > 0 and set k = 0;
2: repeat
3: for i ∈ S do
4: v(k+1)(i) = maxa∈A

(
ra(i) +

∑
j∈S P

a(i, j)v(k)(j)
)

;

5: k = k + 1;

6: until
∥∥∥v(k−1) − v(k)

∥∥∥ < ε

7: π(i) ∈ arg maxa∈A
(
ra(i) +

∑
j∈S P

a(i, j)v(k)(j)
)

for all i ∈ S;

8: return An ε-optimal policy π;

Algorithm 3 Policy iteration for discrete-time MDPs with discounted reward
criterion

Require: MDP (S,A, (P a)a∈A, (r
a)a∈A,p), discount factor γ

1: Specify π(0) ∈ Π some pure initial policy and set k = 0;
2: repeat
3: (Policy evaluation) Solve

rπ
(k)

=
(
I − γPπ

(k)
)
v(k);

4: (Policy improvement) Choose π(k+1) to satisfy

π(k+1) = arg max
a∈A

(
ra + γP av(k)

)
choosing π(k+1)(i) = π(k)(i) when possible;

5: k = k + 1;
6: until π(k) = π(k−1)

7: return An optimal policy π∗ = π(k);

Analysis of Markov Decision Processes under Parameter Uncertainty 3

Algorithm 4 Policy iteration for discrete-time MDPs with expected total re-
ward criterion

Require: MDP (S,A, (P a)a∈A, (r
a)a∈A,p);

1: Specify π(0) ∈ Π some pure initial policy and set k = 0;
2: repeat
3: (Policy evaluation) Solve

rπ
(k)

=
(
I − Pπ

(k)
)
v(k);

4: (Policy improvement) Choose π(k+1) to satisfy

π(k+1) = arg max
a∈A

(
ra + P av(k)

)
choosing π(k+1)(i) = π(k)(i) when possible;

5: k = k + 1;
6: until π(k−1) = π(k)

7: return An optimal policy π∗ = π(k);

1.2 Solution methods for SMDPs

4 Peter Buchholz, Iryna Dohndorf, Dimitri Scheftelowitsch

Algorithm 5 Relative value iteration for discrete-time MDPs with average
reward criterion

Require: MDP (S,A, (P a)a∈A, (r
a)a∈A,p)

1: Specify v(0) ≥ 0, ε > 0, set k = 0, and choose one state i0 ∈ S;
2: repeat
3: w(k) = v(k) − ev(k)(i0) ;
4: for i ∈ S do
5: v(k+1)(i) = maxa∈A

(
ra(i) +

∑
j∈S P

a(i, j)w(k)(j)
)

;

6: k = k + 1;

7: until maxi∈S
(
v(k+1)(i)− v(k)(i)

)
−mini∈S

(
v(k+1)(i)− v(k)(i)

)
< ε

8: π(i) ∈ arg maxa∈A
(
ra(i) +

∑
j∈S P

a(i, j)w(k)(j)
)

for all i ∈ S;

9: Set π̄ = π, G = w(k)(1) and h = w;
10: return An ε-optimal policy π̄, average gain G and bias vector h;

Algorithm 6 Policy iteration for discrete-time MDPs with average reward cri-
terion

Require: MDP (S,A, (P a)a∈A, (r
a)a∈A,p)

1: Specify π(0) ∈ Π some pure initial policy and set k = 0;
2: repeat
3: (Policy evaluation) Solve

rπ
(k)

=
(
I − Pπ

(k)
)
ḡ(k) +G I1

by setting ḡ(i0) = 0 for some fixed state i0 ∈ S. Compute H(k) =
(
I − Pπ

(k)
)

.

Then H̄
(k)

is the matrix with the column corresponding to state i0 replaced by a
column of 1’s. Solve the linear system

rπ
(k)

= H̄
(k)
w

where G(k) is the i0th component of the solution vector w and h(k)(i) = w(i) for
i 6= i0;

4: (Policy improvement) Choose π(k+1) to satisfy

π(k+1) = arg max
a∈A

(
ra + P ah(k)

)
choosing π(k+1)(i) = π(k)(i) when possible;

5: k = k + 1;
6: until π(k−1) = π(k)

7: Set π̄∗ = π(k), G∗ = G(k−1), h = h(k−1)

8: return An optimal policy π̄∗, the optimal average gain G∗ and the deviation vector
h;

Analysis of Markov Decision Processes under Parameter Uncertainty 5

Algorithm 7 Uniformization method for SMDPs with average reward criterion

Require: SMDP (S,A, (P a)a∈A, (r
a)a∈A,p), time vectors {ya}a∈A (average sojourn

times in states)
1: Choose η = mini∈S mina∈A y

a(i)/(1− P a(i, i));
2: for a ∈ A do
3: s̄a(i) = ra(i)/ya(i);

4: for a ∈ A do
5: for i ∈ S do
6: for j ∈ S do
7: if i 6= j then
8: Q̄

a
(i, j) = ηP

a(i,j)
ya(i)

:
9: else

10: Q̄
a
(i, j) = 1 + ηP

a(i,j)−1
ya(i)

;

11: return Discrete-time MDP (S,A, (Q̄a
)a∈A, {sa}a∈A), η;

Algorithm 8 Value iteration for discrete-time SMDPs with average reward
criterion

Require: SMDP (S,A, (P a)a∈A, (r
a)a∈A,p), time vectors {ya}a∈A (average sojourn

times in states)
1: Apply Algorithm 7 to transform the SMDP in an according to the average reward

equivalent MDP {S,A, {Q̄a}a∈A, {sa}a∈A}. Save η;
2: Use value iteration Algorithm 5 to analyze the MDP;
3: return An ε-optimal policy π̄, average gain G and bias vector h = ηh;

Algorithm 9 Policy iteration for discrete-time SMDPs with average reward
criterion

Require: SMDP (S,A, (P a)a∈A, (r
a)a∈A,p), time vectors {ya}a∈A (average sojourn

times in states)
1: Apply Algorithm 7 to transform the SMDP in an according to the average reward

equivalent MDP {S,A, {Q̄a}a∈A, {sa}a∈A}. Save η;
2: Use policy iteration Algorithm 6 to analyze the MDP;
3: return An optimal policy π̄∗, average gain G∗ and bias vector h = ηh;

6 Peter Buchholz, Iryna Dohndorf, Dimitri Scheftelowitsch

Algorithm 10 Transformation method for SMDPs with discounted reward cri-
terion

Require: SMDP (S,A, (P a)a∈A, (r
a)a∈A,

(
(p(a,i),D

(a,i)
0)

)
a∈A,i∈S

), discount factor

β;
1: for a ∈ A do
2: Let {(p(i), D

(i)
0)}i∈S be the set of Phase-type distributions corresponding to

the action a;
3: for i ∈ S do

4: Compute sa(i) = ra(i)
∞∫
0

(1 − F a(i, t))e−βtdt and for all j ∈ S

Q̄
a
(i, j) = P a(i, j)

∞∫
0

fa(i, t)e−βtdt with the uniformization based

method [1] using the following data.

Compute d
(i)
1 = −D(i)

0 I1;

Set P (i) = D
(i)
0 − βI and λ = max∀i,j∈S |P (i)(i, j)|;

Compute P (i) = 1
λ
P (i) + I, d

(i)
1 = 1

λ
d

(i)
1 and the time step ∆ = 1/λ;

5: return Discrete-time discounted MDP (S,A, (Q̄a
)a∈A, (s

a)a∈A);

Algorithm 11 Value iteration for discrete-time SMDPs with discounted reward
criterion

Require: SMDP (S,A, {P a}a∈A, {ra}a∈A, {(p(a,i), D
(a,i)
0)}a∈A,i∈S), discount factor

β;
1: Apply transformation Algorithm 10 to transform the SMDP in an according to the

discounted reward equivalent MDP (S,A, {Q̄a}a∈A, {sa}a∈A);
2: Use value iteration Algorithm 2 to analyze the MDP {S,A, {Q̄a}a∈A, {sa}a∈A}

according to the expected total reward criterion;
3: return An ε-optimal policy π;

Algorithm 12 Policy iteration for discrete-time SMDPs with discounted reward
criterion

Require: SMDP (S,A, {P a}a∈A, {ra}a∈A, {(p(a,i), D
(a,i)
0)}a∈A,i∈S), discount factor

β;
1: Apply transformation Algorithm 10 to transform the SMDP in an according to the

discounted reward equivalent MDP (S,A, {Q̄a}a∈A, {sa}a∈A);
2: Use policy iteration Algorithm 4 to analyze the MDP {S,A, {Q̄a}a∈A, {sa}a∈A}

according to the expected total reward criterion;
3: return Optimal policy π∗;

Analysis of Markov Decision Processes under Parameter Uncertainty 7

1.3 Solution methods for BMDPs

Algorithm 13 Interval value iteration for discrete-time BMDPs with discounted
reward criterion

Require: BMDP
(
S,A, (P a

l)a∈A, (r
a
l)a∈A

)
, discount factor (γal)a∈A, pessimistic is

true when the optimal lower bound has to be computed and false when the optimal
upper bound has to be computed;

1: Specify v(0) ≥ 0, π(0) ≥ 0, ε > 0 and set k = 0;
2: →= ↓ if pessimistic, otherwise →= ↑
3: γ∗ = max

{
γa→(i) | (i, a) ∈ S ×A

}
4: repeat
5: for i ∈ S do
6: [v(k+1)(i), π(k+1)(i)] = interval value(i, π(k)(i), (P a

l)a∈A, (ral)a∈A,

(γa→)a∈A, v(k), ε, pessimistic);

7: k = k + 1;

8: until
∥∥∥v(k+1) − v(k)

∥∥∥ < ε 1−γ∗
2γ∗

9: return An ε-optimal policy π(k), value vector v(k);

8 Peter Buchholz, Iryna Dohndorf, Dimitri Scheftelowitsch

1: function interval value(state i, current decision ai, (P a
l)a∈A, (ral)a∈A, (γa)a∈A,

v, ε, pessimistic)
2: w = −1.0e+ 12;
3: if pessimistic then
4: (i1, i2, . . . , in)← ascending order of states with respect to states’ values v;
5: else
6: (i1, i2, . . . , in)← descending order of states with respect to states’ values v;

7: p = P a
↓;

8: for a ∈ A do
9: val = γ pv ;

10: if pessimistic then
11: val = val + ra↓(i) ;
12: else
13: val = val + ra↑(i) ;

14: r = p I1;
15: for j ∈ (i1, i2, . . . , in) do
16: if P a

↑(i, j) > P
a
↓(i, j) ; then

17: m = min(P a
↑(i, j)− p(j), 1− r);

18: val = val + γa(i) ·mv(j);
19: r = r +m;

20: if r ≥ 1− 10ε; then return ;

21: if val > w then
22: w = val;
23: ai = a;

24: return ai, w;

Analysis of Markov Decision Processes under Parameter Uncertainty 9

Algorithm 14 Policy iteration 1 for discrete-time BMDPs with discounted
reward criterion

Require: BMDP
(
S,A, (P a

l)a∈A, (r
a
l)a∈A

)
, discount factor (γal)a∈A, pessimistic is

true when the optimal lower bound has to be computed and false when the optimal
upper bound has to be computed;

1: Specify φ(1) ∈ Π some pure initial policy, v(0) = rφ(1) and set k = 1;
2: if pessimistic then

3: Γ = diag(γφ
(k)

↓);

M↓(P
φ(k)

l , v(k−1)) = arg min
P∈Pφ

(k)

l
(ΓPv(k−1));

Solve

rφ
(k)

↓ =

(
I −M↓(P

φ(k)

l , v(k−1))

)
v(k);

4: for i ∈ S do
5: for a ∈ A do
6: fa↓ (P a

l(i•), v(k)) = minP∈Pal

(
ΓP (i•)v(k))

)
;

7: Choose φ(k+1)(i) to satisfy

φ(k+1)(i) = arg max
a∈A

(
ra↓(i) + γa↓(i)f

a
↓ (P a

l(i•), v(k))
)

keeping φ(k+1)(i) = φ(k)(i) when possible;

8: if φ(k+1) = φ(k) then
9: Set φ∗↓ = φ(k+1) and terminate. Otherwise set k = k + 1 and go to Step 3;

10: else
11: Γ = diag(γφ

(k)

↑);

M↑(P
φ(k)

l , v(k−1)) = arg max
P∈Pφ

(k)

l
(ΓPv(k−1));

Solve

rφ
(k)

↑ =

(
I −M↑(P

φ(k)

l , v(k−1))

)
v(k);

12: for i ∈ S do
13: for a ∈ A do
14: fa↑ (P a

l(i•), v(k)) = maxP∈Pal

(
P (i•)v(k))

)
;

15: Choose φ(k+1)(i) to satisfy

φ(k+1)(i) = arg max
a∈A

(
ra↑(i) + γa↑(i)f

a
↑ (P a

l(i•), v(k))
)

keeping φ(k+1)(i) = φ(k)(i) when possible;

16: if φ(k+1) = φ(k) then
17: Set φ∗↑ = φ(k+1) and terminate. Otherwise set k = k+ 1 and go to Step 11;

18: return An optimal policy φ∗↓ if pessimistic is true and φ∗↑ if pessimistic is false;

10 Peter Buchholz, Iryna Dohndorf, Dimitri Scheftelowitsch

Algorithm 15 Policy iteration 2 for discrete-time BMDPs with discounted
reward criterion

Require: BMDP
(
S,A, (P a

l)a∈A, (r
a
l)a∈A

)
, discount factor (γal)a∈A, pessimistic is

true when the optimal lower bound has to be computed and false when the optimal
upper bound has to be computed;

1: Specify φ(1) ∈ Π some pure initial policy, v(0) = rφ(1), ε > 0 and set k = 1, l = 1;
2: if pessimistic then
3: repeat

4: Γ = diag(γφ
(k)

↓);

M↓(P
φ(k)

l , v(l−1)) = arg min
P∈Pφ

(k)

l
(ΓPv(l−1));

Solve

rφ
(k)

↓ =

(
I −M↓(P

φ(k)

l , v(l−1))

)
v(l);

5: until
∥∥∥v(l) − v(l−1)

∥∥∥ < ε;

6: v = v(l);
7: for i ∈ S do
8: for a ∈ A do
9: fa↓ (P a

l(i•), v) = minP∈Pal
(
P (i•)v)

)
;

10: Choose φ(k+1)(i) to satisfy

φ(k+1)(i) = arg max
a∈A

(
ra↓(i) + γa↓(i)f

a
↓ (P a

l(i•), v)
)

keeping φ(k+1)(i) = φ(k)(i) when possible;

11: if φ(k+1) = φ(k) then
12: Set φ∗↓ = φ(k+1) and terminate. Otherwise set k = k + 1, l = 1, v(0) = v

and go to Step 3;

13: else
14: repeat

15: Γ = diag(γφ
(k)

↓);

M↑(P
φ(k)

l , v(l−1)) = arg max
P∈Pφ

(k)

l
(ΓPv(l−1));

Solve

rφ
(k)

↑ =

(
I − γM↑(P

φ(k)

l , v(l−1))

)
v(l);

16: until
∥∥∥v(l) − v(l−1)

∥∥∥ < ε;

17: v = v(l);
18: for i ∈ S do
19: for a ∈ A do
20: fa↑ (P a

l(i•), v) = maxP∈Pal
(
P (i•)v)

)
;

21: Choose φ(k+1)(i) to satisfy

φ(k+1)(i) = arg max
a∈A

(
ra↑(i) + γa↑(i)f

a
↑ (P a

l(i•), v)
)

keeping φ(k+1)(i) = φ(k)(i) when possible;

22: if φ(k+1) = φ(k) then
23: Set φ∗↓ = φ(k+1) and terminate. Otherwise set k = k + 1, l = 1, v(0) = v

and go to Step 14;

24: return An optimal policy φ∗↓ if pessimistic is true and φ∗↑ if pessimistic is false;

Analysis of Markov Decision Processes under Parameter Uncertainty 11

Algorithm 16 Interval value iteration for discrete-time BMDPs with average
reward criterion

Require: BMDP
(
S,A, (P a

l)a∈A, (r
a
l)a∈A

)
, pessimistic is true when the optimal

lower bound has to be computed and false when the optimal upper bound has
to be computed;

1: Specify v(0) ≥ 0, π(0) ≥ 0, ε > 0, set k = 0, and choose one state i0 ∈ S;
2: repeat
3: w(k) = v(k) − ev(k)(i0) ;
4: for i ∈ S do
5: [v(k+1)(i), π(k+1)(i)] = interval value(i, π(k)(i), (P a

l)a∈A, (ral)a∈A, I1,w(k),
ε, pessimistic);

6: until maxi∈S
(
v(k+1)(i)− v(k)(i)

)
−mini∈S

(
v(k+1)(i)− v(k)(i)

)
< ε

7: Set π̄ = π(k), G = w(k)(1) and h = w;
8: return An ε-optimal policy π̄, average gain G and bias vector h;

Algorithm 17 Policy iteration 1 for discrete-time BMDPs with average reward
criterion when optimal lower bound should be computed

Require: BMDP
(
S,A, (P a

l)a∈A, (r
a
l)a∈A

)
;

1: Specify φ̄
(1) ∈ Π some pure initial policy, h̄

(0)
= r

φ̄(1)
↓ and set k = 1;

2: M↓(P
φ̄(k)

l , h̄
(k−1)

) = arg min
P∈P φ̄

(k)

l
(P h̄

(k−1)
);

Solve

rφ̄
(k)

↓ =

(
I −M↓(P

φ̄(k)

l , h̄
(k−1)

)

)
h̄

(k)
+ H̄↓ I1;

by setting h̄
(k)

(i0) = 0 for some fixed state i0 ∈ S. Compute

Ḡ
(k)
↓ =

(
I −M↓(P

φ̄(k)

l , h̄
(k−1)

)

)
. Then G̃

(k)
↓ is the matrix with the col-

umn corresponding to state i0 replaced by a column of 1’s. Solve the linear system

rφ̄
(k)

= G̃
(k)
↓ w

where H̄
(k)
↓ is the i0th component of the solution vector w and h̄

(k)
(i) = w(i) for

i 6= i0;

3: for i ∈ S; do
4: for a ∈ A; do

5: fa↓ (P a
l(i•), h̄

(k)
) = minP∈Pal

(
P (i•)h̄(k)

)
)

;

6: Choose φ̄
(k+1)

(i) to satisfy

φ̄
(k+1)

(i) = arg max
a∈A

(
ra↓(i) + fa↓ (P a

l(i•), h̄
(k)

)
)

keeping φ̄
(k+1)

(i) = φ̄
(k)

(i) when possible;

7: if φ̄
(k+1)

= φ̄
(k)

then

8: Set φ̄
∗
↓ = φ̄

(k+1)
and terminate. Otherwise set k = k + 1 and go to Step 2;

9: return An optimal policy φ̄
∗
↓;

12 Peter Buchholz, Iryna Dohndorf, Dimitri Scheftelowitsch

Algorithm 18 Policy iteration 1 for discrete-time BMDPs with average reward
criterion when optimal upper bound should be computed

Require: BMDP
(
S,A, (P a

l)a∈A, (r
a
l)a∈A

)
;

1: Specify φ̄
(1) ∈ Π some pure initial policy, h̄

(0)
= r

φ̄(1)
↑ and set k = 1;

2: M↑(P
φ̄(k)

l , h̄
(k−1)

) = arg max
P∈P φ̄

(k)

l
(P h̄

(k−1)
);

Solve

rφ̄
(k)

↑ =

(
I −M↑(P

φ̄(k)

l , h̄
(k−1)

)

)
h̄

(k)
+ H̄↑ I1;

by setting h̄
(k)

(i0) = 0 for some fixed state i0 ∈ S. Compute

Ḡ
(k)
↑ =

(
I −M↑(P

φ̄(k)

l , h̄
(k−1)

)

)
. Then G̃

(k)
↑ is the matrix with the col-

umn corresponding to state i0 replaced by a column of 1’s. Solve the linear system

rφ̄
(k)

= G̃
(k)
↑ w

where H̄
(k)
↑ is the i0th component of the solution vector w and h̄

(k)
(i) = w(i) for

i 6= i0;

3: for i ∈ S; do
4: for a ∈ A; do

5: fa↑ (P a
l(i•), h̄

(k)
) = maxP∈Pal

(
P (i•)h̄(k)

)
)

;

6: Choose φ̄
(k+1)

(i) to satisfy

φ̄
(k+1)

(i) = arg max
a∈A

(
ra↑(i) + fa↑ (P a

l(i•), h̄
(k)

)
)

keeping φ̄
(k+1)

(i) = φ̄
(k)

(i) when possible;

7: if φ̄
(k+1)

= φ̄
(k)

then

8: Set φ̄
∗
↑ = φ̄

(k+1)
and terminate. Otherwise set k = k + 1 and go to Step 2;

9: return An optimal policy φ̄
∗
↑;

Analysis of Markov Decision Processes under Parameter Uncertainty 13

Algorithm 19 Policy iteration 2 for discrete-time BMDPs with average reward
criterion when optimal lower bound should be computed

Require: BMDP
(
S,A, (P a

l)a∈A, (r
a
l)a∈A

)
;

1: Specify φ̄
(1) ∈ Π some pure initial policy, h̄

(0)
= r

φ̄(1)
↓ and set k = 1, l = 1;

2: repeat

3: M↓(P
φ̄(k)

l , h̄
(l−1)

) = arg min
P∈P φ̄

(k)

l
(P h̄

(l−1)
);

Solve

rφ̄
(k)

↓ =

(
I −M↓(P

φ̄(k)

l , h̄
(l−1)

)

)
h̄

(l)
+ H̄↓ I1;

by setting h̄
(l)

(i0) = 0 for some fixed state i0 ∈ S. Compute

Ḡ
(k)
↓ =

(
I −M↓(P

φ̄(k)

l , h̄
(l−1)

)

)
. Then G̃

(k)
↓ is the matrix with the col-

umn corresponding to state i0 replaced by a column of 1’s. Solve the linear system

rφ̄
(k)

= G̃
(k)
↓ w

where H̄
(k)
↓ is the i0th component of the solution vector w and h̄

(l)
(i) = w(i) for

i 6= i0;

4: until
∥∥∥h̄(l) − h̄(l−1)

∥∥∥ < ε;

5: h̄ = h̄
(l)

;
6: for i ∈ S; do
7: for a ∈ A; do
8: fa↓ (P a

l(i•), h̄) = minP∈Pal
(
P (i•)h̄)

)
;

9: Choose φ̄
(k+1)

(i) to satisfy

φ̄
(k+1)

(i) = arg max
a∈A

(
ra↓(i) + fa↓ (P a

l(i•), h̄)
)

keeping φ̄
(k+1)

(i) = φ̄
(k)

(i) when possible;

10: if φ̄
(k+1)

= φ̄
(k)

then

11: Set φ̄
∗
↓ = φ̄

(k+1)
and terminate. Otherwise set k = k + 1, l = 1, h̄

(0)
= h̄ and

go to Step 2;

12: return An optimal policy φ̄
∗
↓;

14 Peter Buchholz, Iryna Dohndorf, Dimitri Scheftelowitsch

Algorithm 20 Policy iteration 2 for discrete-time BMDPs with average reward
criterion when optimal upper bound should be computed

Require: BMDP
(
S,A, (P a

l)a∈A, (r
a
l)a∈A

)
;

1: Specify φ̄
(1) ∈ Π some pure initial policy, h̄

(0)
= r

φ̄(1)
↑ and set k = 1, l = 1;

2: repeat

3: M↑(P
φ̄(k)

l , h̄
(l−1)

) = arg max
P∈P φ̄

(k)

l
(P h̄

(l−1)
);

Solve

rφ̄
(k)

↑ =

(
I −M↑(P

φ̄(k)

l , h̄
(l−1)

)

)
h̄

(l)
+ H̄↑ I1;

by setting h̄
l
(i0) = 0 for some fixed state i0 ∈ S. Compute Ḡ

(k)
↑ =(

I −M↑(P
φ̄(k)

l , h̄
(l−1)

)

)
. Then G̃

(k)
↑ is the matrix with the column corre-

sponding to state i0 replaced by a column of 1’s. Solve the linear system

rφ̄
(k)

= G̃
(k)
↑ w

where H̄
(k)
↑ is the i0th component of the solution vector w and h̄

(l)
(i) = w(i) for

i 6= i0;

4: until
∥∥∥h̄(l) − h̄(l−1)

∥∥∥ < ε;

5: h̄ = h̄
(l)

;
6: for i ∈ S; do
7: for a ∈ A; do
8: fa↑ (P a

l(i•), h̄) = maxP∈Pal
(
P (i•)h̄)

)
;

9: Choose φ̄
(k+1)

(i) to satisfy

φ̄
(k+1)

(i) = arg max
a∈A

(
ra↑(i) + fa↑ (P a

l(i•), h̄)
)

keeping φ̄
(k+1)

(i) = φ̄
(k)

(i) when possible;

10: if φ̄
(k+1)

= φ̄
(k)

then

11: Set φ̄
∗
↑ = φ̄

(k+1)
and terminate. Otherwise set k = k + 1, l = 1, h̄

(0)
= h̄ and

go to Step 2;

12: return An optimal policy φ̄
∗
↑;

Analysis of Markov Decision Processes under Parameter Uncertainty 15

1.4 Solution methods for BSMDPs

Algorithm 21 Transformation method for BSMDPs with average reward cri-
terion

Require: BSMDP
(

(P a
l)a∈A, (F

a
l(i, t))a∈A, (r

a
l)
)

;

1: for (→,←) ∈ {(↑, ↓), (↓, ↑)} do
2: for (i, a) ∈ S ×A do

3: Let the {(p(i)
↓ , D

(i)
0↓)}ai∈S and {(p(i)

↑ , D
(i)
0↑)}ai∈S be the sets of Phase-type

distributions corresponding to the action a;
4: ya→(i) = −p(i)

→ (D
(i)
0→)−1 I1;

5: sa→(i) =
ra→(i)

ya→(i)
;

6: η = mini∈S,a∈A
ya(i)↓

1−Pa→(i,i)
;

7: for a ∈ A do
8: S = η(P a

→ − I);
9: d = diag(S);

10: R = diag(ya→)−1(S − diag(d));
11: e = diag(ya←)−1d+ I1;
12: Qa

→ = diag(e) +R;

13: return BMDP
(

(Qa
l)a∈A, (sl)a∈A

)
, η ;

Algorithm 22 Analysis of BSMDPs under the average reward criterion

Require: BSMDP
(

(P a
l)a∈A, (F

a
l(i, t))a∈A, (r

a
l)
)

;

1: Transform
(

(P a
l)a∈A, (F

a
l(i, t))a∈A, (r

a
l)
)

into BMDP
(

(Qa
l)a∈A, (sl)a∈A

)
, η ∈ IR

using Algorithm 21.

2: Analyze BMDP
(
S,A, (Qa

l)a∈A, (sl)a∈A
)

with one of methods 16 , 17, 18, 19, 20

and obtain policy φ, gain H, bias vector h.
3: return (φ,H, ηh)

16 Peter Buchholz, Iryna Dohndorf, Dimitri Scheftelowitsch

Algorithm 23 Transformation method for BSMDPs with discounted reward
criterion

Require: BSMDP
(

(P a
l)a∈A, (F

a
l(i, t))a∈A, (r

a
l)
)

, discount rate β;

1: (Qa
l)a∈A = (P a

l)a∈A ;
2: for a ∈ A do
3: Let the {(p(i)

↓ , D
(i)
0↓)}ai∈S and {(p(i)

↑ , D
(i)
0↑)}ai∈S be the sets of Phase-type distri-

butions corresponding to the action a;

4: for a ∈ A do
5: for i ∈ S do
6: Using {(p(i)

↓ , D
(i)
0↓)}ai∈S compute lower bound vectors and matrices

d
(i)
1↓ = −D(i)

0↓ I1;

Set P
(i)
↓ = D

(i)
0↓ − βI and λ↓ = max∀i,j∈S |P (i)

↓ (i, j)|;
P

(i)
↓ = 1

λ↓
P

(i)
↓ + I,

d
(i)
1↓ = 1

λ↓
d

(i)
1↓ and the time step ∆↓ = 10/λ↓;

Compute sa↓(i) = ra↓(i)
∞∫
0

(1− F a↓ (i, t))e−βtdt and

the discount factor γa↓(i) =
∞∫
0

fa↓ (i, t)e−βtdt with the uniformization

based method [1] using P
(i)
↓ , d

(i)
1↓ , ∆↓.

Using {(p(i)
↑ , D

(i)
0↑)}ai∈S compute upper bound vectors and ma-

trices
d

(i)
1↑ = −D(i)

0↑ I1;

P
(i)
↑ = D

(i)
0↑ − βI;

λ↑ = max∀i,j∈S |P (i)
↑ (i, j)|;

P
(i)
↑ = 1

λ↑
P

(i)
↑ + I;

d
(i)
1↑ = 1

λ↑
d

(i)
1↑ and the time step ∆↑ = 10/λ↑;

Compute sa↑(i) = ra↑(i)
∞∫
0

(1− F a↑ (i, t))e−βtdt and

the discount factor γa↑(i) =
∞∫
0

fa↑ (i, t)e−βtdt with the uniformization

based method [1] using P
(i)
↑ , d

(i)
1↑ , ∆↑.

7: return (Qa
l)a∈A, (sl)a∈A, (γl)a∈A ;

Analysis of Markov Decision Processes under Parameter Uncertainty 17

Algorithm 24 Analysis of BSMDPs under the discounted reward criterion

Require: BSMDP
(

(P a
l)a∈A, (F

a
l(i, t))a∈A, (r

a
l)
)

, discount rate γ ∈ [0, 1);

1: Transform
(

(P a
l)a∈A, (F

a
l(i, t))a∈A, (r

a
l)
)

into BMDP
(

(Qa
l)a∈A, (sl)a∈A

)
, state-

dependent discount factor vector (γal ∈ IR|S|)a∈A using Algorithm 23.

2: Analyze BMDP
(
S,A, (Qa

l)a∈A, (sl)a∈A
)

with one of methods 13, 14, 15 under

discount factor (γal)a∈A and obtain policy φ, gain vector v.
3: return (φ,v)

18 Peter Buchholz, Iryna Dohndorf, Dimitri Scheftelowitsch

1.5 Solution methods for continuous-time processes

Algorithm 25 Uniformization method for CTMDPs

Require: CTMDP (S,A, {Qa}a∈A, {ra}a∈A), discount factor β, discounted is true for
the discounted reward measure and false else.

1: λ = max∀i∈S,∀a∈A |Qa(i, i)|;
2: for a ∈ A do
3: P a = I + 1

λ
Qa;

4: if discounted then
5: za(i) = ra(i)

λ+β
, ∀ i ∈ S ;

6: else
7: za(i) = ra(i)

λ
, ∀ i ∈ S ;

8: if discounted then
9: γ = λ

λ+β
;

10: return Discrete-time MDP {S,A, {P a}a∈A, {za}a∈A}, discount factor γ if dis-
counted is true;

References

1. D. Gross and D. Miller. The randomization technique as a modeling tool and
solution procedure for transient Markov processes. Operations Research, 32, 1984.

	Analysis of Markov Decision Processes under Parameter Uncertainty Online Companion
	Algorithms
	Solution methods for MDPs
	Solution methods for SMDPs
	Solution methods for BMDPs
	Solution methods for BSMDPs
	Solution methods for continuous-time processes

