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Abstract. Model based computation of optimal maintenance strategies
is one of the classical applications of Markov Decision Processes. Unfor-
tunately, a Markov Decision Process often does not capture the behavior
of a component or system of components correctly because the duration
of different operational phases is not exponentially distributed and the
status of component is often only partially observable during operational
times. The paper presents a general model for components with partially
observable states and non-exponential failure, maintenance and repair
times which are modeled by phase type distributions. Optimal mainte-
nance strategies are computed using Markov decision theory. However,
since the internal state of a component is not completely known, only
bounds for the parameters of a Markov decision process can be com-
puted resulting in a bounded parameters Markov decision process. For
this kind of process optimal strategies can be computed assuming best,
worst or average case behavior.
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1 Appendix: Proofs

Proof of Theorem 1 from [1] Let η = νie
t∗Di/

(
νie

t∗Di I1
)

for some t∗ ≥ 0

the distribution among the states of phase i at time l ·∆. The behavior in the
following interval can be described exactly by the matrix

Bi =

(
Di dibi

0 Q0

)

and ξ = (η,0) e∆Bi is then the distribution at time (l + 1) ·∆.

ξ =
(
ξ−1, ξ0, . . . , ξ2N

)
, where ξ−1 contains the probabilities of the state

of phase i under the condition that the process remains in i during the whole
interval and ξj (0 ≤ j ≤ 2N) contains the probabilities of states in phase j
which means that phase i has been left.



We present the proof for the lower bound, the proof for the upper bound is
completely analogous. We have

e∆Bi =

(
e∆Di e∆Didibi

0 e∆Q0

)
and

e∆B−
i =

 e−∆λ
+
i e−∆λ

+
i λ−

i bi

0 e∆Q0

 .

By assumption ξ = (η,0) e∆Bi and φ− = (1,0) e∆B−
i . Furthermore, let λi(t) =

νetDidi/(νe
tDi I1). Then νetDi I1 = 1 −

∫ t
0
e−τλi(t)λi(t)dτ ≥ 1 − e−tλ

+
i which

implies that ξ−1 I1 ≥ φ−
−1.

For the remaining elements of the vector observe that lower right submatrices
of Bi and B−

i equal Q0 and that all elements in e∆Q0 are non-negative. Thus,
the sub-vector (ξ1, . . . , ξ2N ) and (φ1, . . . ,φ2N ) can both be computed from∫ ∆

0

µτbie
(∆−τ)Q0dτ

where µτ is the flow from the first block (first visit of phase i) into the remaining
states. For matrix B µτ equals

µτ = ηeτDidi ≥ ηeτDi I1λ−i ≥ (1 − e−τλ
+
i )λ−i = µ−

τ .

µ−
τ the flow into the second block for B−

i . The vectors at time (l+ 1)∆ are then
given by

φ0:2N =
∫∆
0
µτbie

(∆−τ)Q0 and

φ−
0:2N =

∫∆
0
µ−
τ bie

(∆−τ)Q0

Since all entries of the matrices and vectors are non-negative, a smaller flow into
the submatrix results in elementwise smaller values in the integral above.

Proof of Theorem 2 from [1] The proof is similar to the proof for Theorem 1
presented above. Again we show the proof for the lower bound. The reward for
state j in phase i is given by rj + pidi(j) + rpos. Consequently, r−i is a lower
bound for this reward. It has already been shown in the proof for Theorem 2 that
the probability of being in phase i without leaving it is smaller in the process
described by B−

i , then in the process described by Bi. This implies that also
the accumulated reward is smaller.

The lower right sub-matrix isQ0 in both matricesB−
i andBi and the reward

vector is in both cases r. Let

φ́τ =
∫ τ
0
ηe−xDidibie

−(τ−x)Q0dx,

φ́
−
τ =

∫ τ
0
e−xλ

+
i λ−

i bie
−(τ−x)Q0dx.

It follows from the proof of Theorem 2 that φ́
−
τ ≤ φ́τ which implies that also

φ́
−
τ r ≤ φ́τr which equal the accumulated rewards.



References

1. P.Buchholz, I.Dohndorf, and D. Scheftelowitsch. Time-based maintenance models
under uncertainty. 2017.


