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Abstract. Model based computation of optimal maintenance strategies
is one of the classical applications of Markov Decision Processes. Unfor-
tunately, a Markov Decision Process often does not capture the behavior
of a component or system of components correctly because the duration
of different operational phases is not exponentially distributed and the
status of component is often only partially observable during operational
times. The paper presents a general model for components with partially
observable states and non-exponential failure, maintenance and repair
times which are modeled by phase type distributions. Optimal mainte-
nance strategies are computed using Markov decision theory. However,
since the internal state of a component is not completely known, only
bounds for the parameters of a Markov decision process can be com-
puted resulting in a bounded parameters Markov decision process. For
this kind of process optimal strategies can be computed assuming best,
worst or average case behavior.
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1 Appendix: Proofs

Proof of Theorem 1 from [1] Let η = νie
t∗Di/

(
νie

t∗Di I1
)

for some t∗ ≥ 0

the distribution among the states of phase i at time l ·∆. The behavior in the
following interval can be described exactly by matrix

Bi =

(
Di dibi

0 Q

)

and ξ = (η,0) e∆Bi is then the distribution at time (l + 1) ·∆.

ξ =
(
ξ−1, ξ0, . . . , ξ2N

)
, where ξ−1 contains the probabilities of the state

of phase i under the condition that the process remains in i during the whole
interval and ξj (0 ≤ j ≤ 2N) contains the probabilities of states in phase j
which means that phase i has been left.



We present the proof for the lower bound, the proof for the upper bound is
completely analogous. We have

e∆Bi =

(
e∆Di e∆Didibi

0 e∆Q

)
and

e∆B−
i =

 e−∆λ
+
i e−∆λ

+
i λ−

i bi

0 e∆Q

 .

By assumption ξ = (η,0) e∆Bi and φ− = (1,0) e∆B−
i . Furthermore, let λi(t) =

νetDidi/(νe
tDi I1). Then νetDi I1 = 1 −

∫ t
0
e−τλi(t)λi(t)dτ ≥ 1 − e−tλ

+
i which

implies that ξ−1 I1 ≥ φ−
−1.

For the remaining elements of the vector observe that lower right submatrices
of Bi and B−

i equal Q and that all elements in e∆Q are non-negative. Thus, the
sub-vector (ξ1, . . . , ξ2N ) and (φ1, . . . ,φ2N ) can both be computed from∫ ∆

0

µτbie
(∆−τ)Qdτ

where µτ is the flow from the first block (first visit of phase i) into the remaining
states. For matrix B µτ equals

µτ = ηeτDidi ≥ ηeτDi I1λ−i ≥ (1 − e−τλ
+
i )λ−i = µ−

τ .

µ−
τ the flow into the second block for B−

i . The vectors at time (l+ 1)∆ are then
given by

φ0:2N =
∫∆
0
µτbie

(∆−τ)Q and

φ−
0:2N =

∫∆
0
µ−
τ bie

(∆−τ)Q

Since all entries of the matrices and vectors are non-negative, a smaller flow into
the submatrix results in elementwise smaller values in the integral above.

Proof of Theorem 2 from [1] The proof is similar to the proof for Theorem 1
presented above. Again we show the proof for the lower bound.

The behavior of the component without knowledge of the detailed state in
phase i is described by matrix Ĉi from Eq. (9). If the initial distribution is
known, then matrix

C =

(
Di dibi

0 Q

)
and initial distribution (η,0), where η is the distribution over the phases of phase
i at time l ·∆, can be used to compute the reward accumulated in [l ·∆, (l+1)·∆].
Let ri be a column vector of length mi with value ri + di(j)r0 + rpos in position
j, then

(η,0)

∫ ∆

0

eτCdτ

(
ri

r

)
(1)



equals the reward accumulated in the interval. Let ψτ = (ψτ1 ,ψ
τ
2) = (η,0) eτCi

be the probability at time τ , where ψτ1 is of length mi. Then the accumulated
reward can be rewritten as∫ ∆

0

ψτ1ridτ +

∫ ∆

0

ψτ2rdτ.

Now let ψ̂
τ

=
(
ψ̂τ1 , ψ̂

τ

2 , ψ̂
τ
3

)
= (1,0) eτĈi be the probability at time τ for the

process with matrix Ĉi, where ψ̂τ1 and ψ̂τ3 are scalars. The accumulated reward
for this process is given by∫ ∆

0

ψ̂τ1 r
−
i dτ +

∫ ∆

0

ψ̂
τ

2rdτ +

∫ ∆

0

ψ̂τ1u
−
i dτ.

Since Ci and ĈI are generator matrices, the vectors ψτ and ψ̂
τ

are both prob-
ability vectors. Using the same proof as for Theorem 1, it can be shown that
ψτ1 I1 ≥ ψ̂τ1 and ψτ2 ≥ ψ̂

τ

2 . Furthermore, r−i ≤ minj ri(j) and u− ≤ minj r(j).
Then∫∆

0
ψτ1ridτ +

∫∆
0
ψτ2rdτ ≥∫∆

0
ψ̂τ1 r

−
i dτ +

∫∆
0

(ψτ1 I1 − ψ̂τ1 )r−i dτ +
∫∆
0
ψ̂
τ

2rdτ +
∫∆
0

(ψτ2 − ψ̂
τ

2)rdτ ≥∫∆
0
ψ̂τ1 r

−
i dτ +

∫∆
0
ψ̂
τ

2rdτ +
∫∆
0

(
ψτ1 I1 +ψτ2 I1 − ψ̂τ1 − ψ̂

τ

2

)
u−i =∫∆

0
ψ̂τ1 r

−
i dτ +

∫∆
0
ψ̂
τ

2rdτ + ψ̂τ1u
−
i dτ.

The last equality follows from the fact that ψ̂
τ

is a probability vector.
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