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a b s t r a c t

This paper presents a new approach to model weighted graphs with correlated weights at the edges.
Such models are important to describe many real world problems like routing in computer networks or
finding shortest paths in traffic models under realistic assumptions. Edge weights are modeled by phase
type distributions (PHDs), a versatile class of distributions based on continuous time Markov chains
(CTMCs). Correlations between edge weights are introduced by adding dependencies between the PHDs
of adjacent edges using transfer matrices. The newmodel class, denoted as PH graphs (PHGs), allows one
to formulate many shortest path problems as the computation of an optimal policy in a continuous time
Markov decision process (CTMDP). The basic model class is defined, methods to parameterize the
required PHDs and transfer matrices based on measured data are introduced and the formulation of
basic shortest path problems as solutions of CTMDPs with the corresponding solution algorithms are
also provided. Numerical examples for some typical stochastic shortest path problems demonstrate the
usability of the new approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The computation of shortest paths in a weighted graph is a
well-known problem that appears in many application areas like
abstract graph problems, route finding in traffic or computer
networks or reliability analysis to mention only a few examples.
Basically, the problem has been defined on graphs with constant
lengths or weights of the edges where the shortest path between a
source node and a destination node is computed efficiently with
the well-known Dijkstra algorithm [17] or its variants. However in
many practical applications, weights are stochastic rather than
deterministic. This is for example the case in vehicle routing where
the traffic on a street can only be estimated or in computer
networks where the utilization of links is statistically fluctuating.
This kind of problems results in a variant of the so-called
stochastic shortest path problems [45]. The stochastic shortest
path problem is often much more complex than the deterministic
version since a variety of questions arises according to the
optimality of a path and the assumptions which are necessary to
specify the model. One can consider a path as optimal if its
expected weight is minimal which results in a relatively simple
problem if the weights of the edges are independent and

completely specified random variables. However, often weights
are dependent. Dependencies may occur for example due to time-
dependent traveling times or they may occur between the weights
of adjacent edges in the graph. Additionally, the expected traveling
time is often not the only and not even the major result, the
variance or the probability of meeting a deadline are also impor-
tant resulting in different problem formulations. Depending on the
concrete assumptions and requirements, the problem can become
complex and hard to solve such that solution algorithms often
apply approximations or heuristics [47].

In this paper, we propose a new model to analyze stochastic
shortest path problems with dependent weights of the edges
which is denoted as PH graphs (PHGs). It is assumed that weights
are defined by phase type distributions (PHDs) [32], a general class
of distributions that allow one to approximate distributions with
non-zero densities on the positive half-plane arbitrarily close [35].
Correlation between the weights of adjacent edges is introduced
by making the initial phase of the PHD for the second edge
dependent on the last phase of the PHD of the first edge. This is
done by introducing the so-called transfer matrices. The descrip-
tion of dependencies is similar to the description of dependencies
in Markovian arrival processes (MAPs) [31], a well-established
process model in computational probability. A PHG includes all
edges of the graph and for each edge the set of states defined for
the corresponding PHD. We will show that each PHG can be
mapped onto a Markov decision process (MDP) [40] in continuous
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time (CTMDP) such that the shortest path problem is equivalent to
the computation of an optimal policy for the CTMDP. The focus of
this paper is on the definition of the class of PHGs and on methods
for the parameterization of models based on measurements
resulting from real systems or adequate simulation models. It is
not so much on specific approaches to compute the shortest path.
However, those algorithms are available for MDPs and can be used
for MDPs resulting from PHGs as well, as we will outline.

The paper is structured as follows. In the next section, a brief
overview of related work is given. Afterwards, Section 3 introduces
the model class of PHGs. In Section 4 the problem of parameteriz-
ing PHDs and transfer matrices is considered which is denoted as
fitting in the area of PHDs and MAPs. Then the analysis of the
weights of a given path and two different versions of the shortest
path problem in PHGs are defined and it is outlined how these
problems can be solved using common algorithms for MDPs.
Section 7 analyzes the complexity of the proposed approach
theoretically and experimentally. In Section 8 an example of a
vehicular traffic network is presented. Finally, the paper ends with
the conclusions which include a brief outlook on possible exten-
sions of the model.

2. Related work

Stochastic shortest path problems are the most studied problems
in random graphs. In stochastic shortest path problems the
weights at the edges are modeled by random variables and one
looks for a path with minimal weight. Bonet and Geffner proposed
in [9] a real-time dynamic programming algorithm for minimizing
the expected weight using Markov decision theory. The variant I-
SSPPR was introduced by Andreatta and Romeo [2] describing
deterministic networks with stochastic topology where random
links can be either active or inactive. Then the system state
containing information about active and inactive edges is known
by a decision maker and the decision to reroute can be made each
time a node with an inactive edge has been reached. This work
was subsequently studied by Bertsekas and Tsiksiklis [7]. Their
model includes the joint probability distribution of random vari-
ables describing edge weights. Two other variants of the problem
have been introduced, namely networks with dependent and
independent edge weights. As the decision maker traverses the
network from the source to the sink, the actual edge weights are
learned and their realizations remain afterwards constant. Pro-
posed dynamic programming algorithms have exponential run
times in the number of realizations of the network, and the
algorithm for solving the variant with independent edge travel
times is exponential in the number of edges. It has been shown
that the problem with dependent edge weights and the one with
independent edge weights are NP-hard [38]. In [7] optimality
results for the general case of the problem, where at each node the
probability distribution over all possible successor nodes is avail-
able, have been provided. Complexity results and heuristic algo-
rithms are given in [38,39,34,33,52].

Stochastic route planning problems often have been considered
in the context of online adaptive algorithms, thus making Markov
decision theory most suitable for constructing policies based on all
weights realized in a route to the current location. Boyan and
Mitzenmacher studied in [10] the bus network problem, where the
goal is to compute an optimal plan within a city minimizing the
expected traveling time. The bus network problem has been
formulated as a time-dependent Markov decision process where
the actions in each state are whether or not to take a bus when it
arrives. Boyan and Littman address in [11] extension of the CTMDP
model in which stochastic state transitions as well as stochastic,
time-dependent action durations are included. Stochastic time-

dependent variants of the problem have also been extensively
studied in [22,20,51]. These problems have a wide range of
applications in robotics as the basis for mobile robot navigation.
Simmons and Koenig [46] use partially observable Markov models
for autonomous office navigation. Their settings maintain topolo-
gical environment information as well as distance, sensor and
actuator data. Then the position of an autonomous robot can be
estimated from the Markov model and a navigation decision can
be made with respect to temporary uncertainty in position and
sensor data. Briggs et al. [12] solve expected shortest paths in
context of robot navigation in stochastic environments. The
expected shortest path problem is then defined as a Markov
model, where it is assumed that the location of the robot is always
known but the state of an edge can change as the robot traverses
the graph. Relevant work based on partially observable MDPs has
been done in the field of motion planning [46,49].

However, there has been little work on decision methods
which directly incorporate correlations between edges and com-
pute an optimal path on this basis. Relevant work most closely
related to our graph model is [18] where a variant of a congested
network with correlated edge weights has been studied. Each edge
has been considered to be in one of the two possible conditions,
either congested or not. The conditional probability density func-
tions for edge weights are assumed to be known and the exact
solution of the multistage adaptive problem has been developed.

The approach presented here has its roots in matrix analytic
methods based on Neuts' fundamental work [32] which has been
further developed by Asmussen [3]. A detailed overview of the
related work in the field of phase-type distributions, MAPs and
matrix analytic methods would exceed the scope of this paper and
thus we mention only major results which are used to parameter-
ize models. The finding of adequate parameters for a PHD is
denoted as fitting. Most of the techniques for fitting PHDs are
based on expectation maximization (EM) algorithms which max-
imize the likelihood according to measured data, e.g., [4,50] where
variants of the algorithm have been used to fit a PHD to a trace.
Our work on parameter fitting is mainly based on [14,26] which
describes an efficient method for fitting the parameters of the PHD
in one step and obtains a MAP or MMPP in a second step. This
approach is used to estimate the parameters of the transfer matrix
to describe correlated weights on consecutive edges. In [50] a
method for fitting Hyper-Erlang distributions to a trace is repre-
sented. It has been shown that any probability density function of
a non-negative random variable can be approximated arbitrarily
close by a Hyper-Erlang distribution. We apply software tools like
gfit from [50] to obtain the parameters of PHDs modeling the
weights of edges in our graph.

To introduce correlation, the parameters of the transfer
matrices have to be estimated based on measurements. The
resulting fitting problem is related to the fitting of the D1 matrix
in MAP fitting approaches [14,26,48]. We adopt methods described
in these papers to obtain a non-negative least squares formulation
of the problem. Algorithms for MAP generation that approximate
the moments and joint moments of the observed traces are most
relevant. In our case, traveling times are measured from traces and
one can solve the fitting problem by a non-negative least squares
problem considering joint moments of the trace and some
necessary conditions resulting from the parameters of PHDs of
adjacent edges.

3. Graphs with PH distributed weights

PH graphs (PHGs) are a weighted graph model where edge
weights are random variables modeled by PHDs and correlation
between arc weights is introduced by making the initial state of
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the PHD of the following edge dependent on the final state of the
PHD of the previous edge. We first introduce some notation before
we describe the details of the model.

Consider a directed weighted graph ðV; EÞ where V is the set of
vertices and E is the set of edges. Edges are numbered with the
letters i; j. There is a starting vertex viniAV and a final vertex
vfinAV with viniavfin. An edge is a directed connection between
two vertices. For iAE let iniðiÞAV be the starting vertex of edge i
and finðiÞAV the destination vertex. We say that edges i; jAE are
adjacent, if finðiÞ ¼ iniðjÞ. The following two sets define the pre-
decessors and successors of edges:

�i¼
∅ if iniðiÞ ¼ vini
fjj finðjÞ ¼ iniðiÞg otherwise

(

i� ¼
∅ if finðiÞ ¼ vfin
fjj iniðjÞ ¼ finðiÞg otherwise

(
ð1Þ

Furthermore, Eini ¼ fij iniðiÞ ¼ vinig and Efin ¼ fij finðiÞ ¼ vfing. A path
between vini and vfin is a sequence of edges ði1;…; iK Þ such that
i1AEini, iK AEfin and ik�1A�ik for k¼2,…,K. Let P be the set of all
finite paths between vini and vfin. We assume that from every vAV,
at least one path to vfin exists. Observe that we are not restricted to
acyclic structures since we allow paths of arbitrary but finite
length.

The weight of edge i is a non-negative random variable Xi

which has a PHD ðπi;DiÞ representation of order ni [32]. A PHD
ðπi;DiÞ of order ni is defined by an absorbing Markov process with
niþ1 states, initial vector ðπi;0Þ and transition matrix

Di �Di1

0 0

� �
:

πi is an ni dimensional (row) distribution vector, Di is an ni � ni

matrix with negative diagonal elements, non-negative non-diag-
onal elements and row sum less or equal to zero. We assume Di is
non-singular which implies that Mi ¼ ð�DiÞ�1 is non-negative and
limt-1eDi t-0. The distribution function and moments of the PHD
are given by

FiðtÞ ¼ 1�πieDi t1 and EðXk
i Þ ¼ k!πiM

k
i 1: ð2Þ

The literature on PHDs is comprehensive and contains a large
number of results (see e.g., [32,35,36]). If the edge weights are
defined by PHDs, then the different weights are independent. To
introduce dependencies, we extend the model by introducing a
dependence between the state where one PHD is left and the next
one is entered. For i; jAE with iA�j define a ni � nj matrix Hij with
HijZ0 and Hij1¼ �Di1. We will denote matrix Hij as the transfer
matrix. Then let Pi;j ¼MiHij. Since Mi;HijZ0 also PijZ0 and

Pij1¼MiHij1¼ ð�DiÞ�1ð�DiÞ1¼ 1:

Thus, Pi;j is a stochastic matrix. The interpretation of matrix Pij is as
follows: if the model begins in phase x at edge i and chooses j as
next edge, it will begin with probability Pijðx; yÞ in phase y at edge
j. To keep the weight distribution of edge j invariant, we addition-
ally need

πiPij ¼ πj ) πiMiHij ¼ πj: ð3Þ
If we choose Pij as above, then this implies that if the system starts
with probability distribution πi at edge i, then it starts in the
average with probability distribution πj at edge j. Thus, the
distribution function of the weight of j remains unchanged.
However, the weights are no longer independent since we obtain

EðXk
i ;X

l
jÞ ¼ k!l!πiM

k
i PijM

l
j1 ð4Þ

for the joint moments of order k; l. The computation of joint moments
follows from the computation of joint moments in MAPs as given for
example in [14]. In particular, the covariance of the weights is given by

CovðXi;XjÞ ¼ EðX1
i ;X

1
j Þ�EðX1

i Þ � EðX1
j Þ ¼ πiMiPijMj1�ðπiMi1Þ � ðπjMj1Þ.

Observe that the correlation is defined for subsequent edges but over a
path of length greater than two the effects cumulate. Weights may
have different interpretations in different application areas. Often they
are interpreted as time, e.g., as traveling time on a road or a link of a
computer network. However, other interpretations like monetary cost
or failure rates of components are also possible.

The analysis of paths in a PHG is considered in Section 5 and
the computation of shortest paths in Section 6. Before these results
are presented, we consider the parameterization of the PHDs and
the matrices Hij.

4. Fitting of distributions and correlation

PHDs describing the weights of the edges and matrices Hij

defining the dependencies have to be parameterized. Usually this
is done according to values resulting from real measurements or
simulations. We assume that a set of measurements of entities
that pass through the graph is available. A single measurement is
given by a sequence sk ¼ ðði1k ;w1

k Þ;…; ðickk ;w
ck
k ÞÞ where ijkAV,

ij�1
k A�ijk and 0owj

ko1 (1o jrck). Observe that the sequences
need not start in vini or end in vfin. M is the set of all measured
sequences and K is the number of measured sequences. For edge
i, W i is the multiset of all wk

j from skAM, such that sk contains an
element ðijk;w

j
kÞ with ijk ¼ i. If the value wk

j is part of several
sequences or occurs several times in one sequence, then it
appears several times in W i such that W i is a multiset and not
a set. Similarly, W ij is the multiset of tuples ðwi;wjÞ which appear
in some skAM such that ðihk ;wiÞ; ðihþ1

k ;wjÞ with ihk ¼ i and ihþ1
k ¼ j.

Again, if the same pair appears in several sequences or several
times in one sequence, then it appears several times in the
multiset. Let di and dij be the number of elements in W i and
W ij, respectively. In summary, W i contains all measured weights
for edge i and W ij all measured value pairs of adjacent edges i and
j.

We begin with the computation of parameters for the PHDs
ðπi;DiÞ related to the edges. There are two possible ways of fitting a
PHD to a set of measured values. One can use the measured values
directly, alternatively, first results like moments are derived from
the measurements and then the parameters are fitted according to
these results. If the whole set of measured values is used, then
usually the likelihood, which is defined as

Lπi ;Di
ðW iÞ ¼ ∏

wAW i

πiewDi ð�DiÞ1 ð5Þ

is maximized using an expectation maximization (EM) algorithm.
EM algorithms have a guaranteed convergence towards a local
maximum but convergence can be very slow. The first version of
an EM algorithm for PHDs has been published in [4], later
extensions [28,50] use restricted classes of PHDs which makes
the parameter fitting much more efficient without reducing the
fitting quality significantly. For example, with the gfit algorithm
presented in [50] Hyper-Erlang distributions, a subclass of PHDs,
can be parameterized fairly quickly as shown experimentally in
Section 7.

Alternatively, it is possible to first derive some quantities from
the measurements which are subsequently used for fitting. Typi-
cally moments are estimated

νki ¼
1
di

X
wAW i

wk ð6Þ

is an estimate for μki ¼ EðXk
i Þ. Methods for fitting parameters of a PH

distribution according to the moments are presented in [8,14,25].
Fitting algorithms for PHDs using maximum likelihood or moment

P. Buchholz, I. Felko / Computers & Operations Research 59 (2015) 51–65 53

https://www.researchgate.net/publication/243047697_Characterization_of_phase-type_distributions?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/238974468_Fitting_Phase-Type_Distributions_via_the_EM_Algorithm?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/233145110_Matching_Three_Moments_with_Minimal_Acyclic_Phase_Type_Distributions?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/228956157_Matching_More_Than_Three_Moments_with_Acyclic_Phase_Type_Distributions?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/223727952_Fitting_World-Wide_Web_Request_Traces_with_the_EM-Algorithm?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/221406881_A_Heuristic_Approach_for_Fitting_MAPs_to_Moments_and_Joint_Moments?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/221406881_A_Heuristic_Approach_for_Fitting_MAPs_to_Moments_and_Joint_Moments?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/215562429_Matrix-Geometric_Solutions_in_Stochastic_Models-An_Algorithm_Approach?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/215562429_Matrix-Geometric_Solutions_in_Stochastic_Models-An_Algorithm_Approach?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/3449402_A_Novel_Approach_for_Phase-Type_Fitting_with_the_EM_Algorithm?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/3449402_A_Novel_Approach_for_Phase-Type_Fitting_with_the_EM_Algorithm?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==


fitting approaches are implemented in several freely available
tools [5,24].

After the PHDs are parameterized to model the weight dis-
tributions at the edges, correlation is added by considering values
in the sets W ij. Parameters in the matrices Hij can also be fitted by
maximizing the likelihood function or by an approximation of
derived values, namely the joint moments. We first introduce the
latter approach.

Let i; j be two edges, iA�j and let W ij contain more than two
elements, then

νk;lij ¼ 1
dij�2

X
ðwi ;wjÞAW ij

wk
i w

l
j ð7Þ

is an estimate for μk;lij ¼ EðXk
i ;X

l
jÞ. Assume that joint moments (k,l)

with 1rkrK;1r lrL should be considered. Since μk;lij ¼
k!l!πiM

kþ1
i HijM

l
j1 is linear in the elements of matrix Hij

min
Hij :Hij Z0 4 Hij1 ¼ �Di1 4 πiMiHij ¼ πj

XK
k ¼ 1

XL
l ¼ 1

μk;lij

νk;lij

�1

0
@

1
A

2
0
B@

1
CA ð8Þ

is a non-negative least squares problem with equality con-
straints which can be solved with standard methods [29] (see
also [14]). The algorithm for solving the least squares problem is
efficient for problems with up to a few hundred variables. The
number of variables corresponds to the number of non-zero
elements in matrix Hij which equals the product of the number
of non-zero elements in πj and Di1. If the minimum in (8)
becomes zero, the estimated joint moments are exactly fitted
by the composition of the two phase type distributions. The
equality constraint πiMiHij ¼ πj assures that the initial distribu-
tion of the PHD for edge j remains πj.

To maximize the likelihood, the maximum of

LHij
¼ ∏

ðwi ;wjÞAW ij

πiewiDiHijewjDj ð�DjÞ1 ð9Þ

has to be computed for HijZ0, Hij1¼ �Di1 and πiMiHij ¼ πj. We
present a combination of an EM algorithm and a non-negative
least squares solution to compute an appropriate matrix.

First, matrix Xð0Þ ¼ �Di1πj is generated which is a matrix
describing uncorrelated weights at i and j. Other more sophisti-
cated initializations of Xð0Þ may be used as well, but the conditions
Xð0Þ1¼ �Di1 and πiMiX

ð0Þ ¼ πj have to hold. Then iterations are
performed and in each iteration the following three steps are
computed to obtain matrix XðkÞ from Xðk�1Þ. First, an EM step is
made to compute a matrix YðkÞ as follows:

YðkÞðx; yÞ ¼
X

ðwi ;wjÞAW ij

πiewiDiXðk�1Þðx; yÞewjDj ð�DjÞ1 ð10Þ

for 1rxrni and 1ryrnj. Observe that Xðk�1Þðx; yÞ ¼ 0 implies
YðkÞðx; yÞ ¼ 0 which implies that zero elements in Xðk�1Þ remain
zero in YðkÞ. In the second step, the rows of YðkÞ are normalized
such Xðk�1Þ and YðkÞ have the same row sums. Thus, all non-zero
entries are transformed to

YðkÞðx; yÞ ¼
Pnj

z ¼ 1 X
ðk�1Þðx; zÞPnj

z ¼ 1 Y
ðkÞðx; zÞ

YðkÞðx; yÞ: ð11Þ

For the resulting matrix YðkÞ1¼ �Di1 and YðkÞZ0 holds but the
third condition assuring initial distribution πj usually will not hold.
Therefore, a non-negative least squares problem with equality
constraints is solved to compute the new matrix XðkÞ

min
XðkÞ :XðkÞ Z0 4 XðkÞ1 ¼ YðkÞ1 4 πiMiX

ðkÞ ¼ πj

JXðkÞ �YðkÞ J2
� �

ð12Þ

J � J is the Frobenius norm. Observe that (12) and (8) are identical
problems. The resulting matrix XðkÞ is used as Hij and assures often
a good approximation of the measured correlation.

Example 1. We use a small queueing example to show the fitting
of a PHD to measured data. The basic model is shown in Fig. 1a.

Model description and parameterization: The model consists of
three queues. Arrivals to Q1 are generated by a Markov modulated
Poisson process (MMPP) with two states. In an MMPP, arrival rates
of a Poisson process depend on the state of an independent
Markov process [19]. The MMPP is a special case of the more
general MAP. The 2-state MMPP for our model is given by the
following matrices:

DMMPP
0 ¼ �0:005 0:001

2 �13

� �
; DMMPP

1 ¼ 0:004 0
0 11

� �
;

where DMMPP
0 is the infinitesimal generator of the continuous time

Markov chain and DMMPP
1 is the matrix containing two Poisson

arrival rates on the diagonal. If the Markov chain is in state i,
arrivals occur according to a Poisson process with rate DMMPP

1 ði; iÞ.
The service time at Q1 is exponentially distributed. After leaving

Q1 an entity enters with probability p12, Q2 and with probability
p13 ¼ 1�p12, Q3. Service times at Q2 and Q3 are also exponentially
distributed. We assume that p12 ¼ 0:99. Q3 receives an additional
Poisson arrival stream with rate λ2.

The MMPP generating the arrivals has a high arrival rate in
state 2 and a low arrival rate in state 1. It stays a long time in state
1 with a low arrival rate which implies that the load of Q1 and
subsequently Q2 is low. In state 2, Q1 fills quickly such that
customers are backlogged and waiting times increase. Addition-
ally, many customers leave towards Q2 which also fills up. The
effect of the high arrival rate on Q3 is marginal because the routing
probability form Q1 to Q3 is small. Thus, the sojourn times in Q1

and Q2 are highly correlated whereas the sojourn times in Q1 and
Q3 are almost independent.

A graph abstraction of the queueing model is shown in Fig. 1b.
The sojourn time of Q1 corresponds to the traveling time along the
edge e1 in Fig. 1b. Analogously, the sojourn times of Q2 and Q3

correspond to the traveling time along the adjacent edges e2 and
e3, respectively.

Simulation results: Samples are generated from a model which
is implemented in the OMNeTþþ simulator [23]. We produced a
trace with K¼14,300 observed samples for each queue. From the
trace the three sets WQ1

, WQ2
, and WQ3

containing all measured
sojourn times in queues and two sets WQ1Q2

, WQ1Q3
containing all

measured value pairs of consecutive queues are generated. The
sets WQ1

, WQ2
, and WQ3

are used for fitting three phase-type
distributions of order 4 using the software gfit (see, e.g., [50]). The
sojourn time of entities traveling through Q1 and Q2 is correlated
with a correlation coefficient of ρ̂ ¼ 0:1345, and the first joint
moment μ̂ ¼ 1:2142. The sojourn times for each queue are sum-
marized graphically in Fig. 2. Obviously, the sojourn times in Q1

and Q2 have large peaks and the correlation between both sojourn
time becomes visible. The sojourn time in Q3 is less variable and
no correlation with the sojourn time in Q1 or Q2 is visible.

Fig. 1. The network of :=M=1=1 queues and corresponding traffic junction graph in
Example (1). The traveling times along the edges are modeled by residence times of
Q1, Q2, and Q3 in the open queue network in (a). In (b) the edges with correlated
traveling times are highlighted.

P. Buchholz, I. Felko / Computers & Operations Research 59 (2015) 51–6554

https://www.researchgate.net/publication/221406881_A_Heuristic_Approach_for_Fitting_MAPs_to_Moments_and_Joint_Moments?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/221406779_ProFiDo_-_The_Processes_Fitting_Toolkit_Dortmund?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/220955489_An_overview_of_the_OMNeT_simulation_environment?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/220737290_PhFit_A_General_Phase-Type_Fitting_Tool?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/220253189_The_Markov-Modulated_Poisson_process_MMPP_cookbook?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==
https://www.researchgate.net/publication/3449402_A_Novel_Approach_for_Phase-Type_Fitting_with_the_EM_Algorithm?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==


We obtain with gfit a hyperexponential distributions ðπe1 ;De1 Þ
for the sojourn time in Q1 and a Hyper-Erlang distribution ðπe2 ;De2 Þ
for the sojourn time in Q2

De1 ¼

�0:657 0:000 0:000 0:000
0:000 �0:721 0:000 0:000
0:000 0:000 �3:429 0:000
0:000 0:000 0:000 �4:717

0
BBB@

1
CCCA;

De2 ¼

�0:724 0:000 0:000 0:000
0:000 �3:534 0:000 0:000
0:000 0:000 �1:085 1:085
0:000 0:000 0:000 �1:085

0
BBB@

1
CCCA:

The initial distributions are πe1 ¼ ð0:4148;0:1958; 0:1851;0:2043Þ
and πe2 ¼ ð0:5206; 0:3858; 0:0936;0Þ. The PHD ðπe3 ;De3 Þ with
πe3 ¼ ð1Þ and De3 ¼ ð�0:9999Þ models the sojourn time distribution
of Q3 which is almost exponential because Q3 is anM/M/1 systemwith
a small additional load from Q1.

To describe the correlation between the sojourn times along
the edges e1 and e2 the values in matrix He1e2 have to be fitted. In
this example we use the EM algorithm described above and the
values from WQ1Q2

. The final matrix YðkÞ results from the EM step
and the final approximation XðkÞ is computed by solving (12)

YðkÞ ¼

0:499648 0 0:157417 0
0:335285 0:386282 0 0

0 3:429211 0 0
2:581962 2:135355 0 0

0
BBB@

1
CCCA;

XðkÞ ¼

0:508965 0 0:148109 0
0:348646 0:372924 0 0

0 3:429212 0 0
2:418297 2:299020 0 0

0
BBB@

1
CCCA

The resulting matrix of the EM algorithm YðkÞ exhibits the correlation
ρ¼0.1296 and the first joint moment 1.2099 but the condition
πe1Me1Y

ðkÞ ¼ πe2 is not satisfied. Thus, matrix XðkÞ is finally used as
He1e2 and we obtain the value for the correlation ρ¼0.1294 and for the
first joint moment μ1;1e1e2 ¼ 1:2097. Both are very good approximations
of the values estimated from the traces of the simulation model.

Since sojourn times in Q1 and Q3 are uncorrelated, the fitting of
the transfer matrix He1e3 is not required, He1e3 ¼ de1πe3 , where
de1 ¼ ð�De1 Þ1 is the exit vector for the PHD that models the weight
distribution of the edge e1, is an appropriate choice.

5. Analysis of paths in PH graphs

For a given PHG paths can be analyzed via the analysis of absorbing
Markov chains. Let ði1;…; iK ÞAP. The traveling time along a path is
described by an absorbing continuous timeMarkov chain (CTMC) with
n¼ PK

k ¼ 1 nik states. Let S be the state space of the CTMC. The initial
vector equals π¼ ðπi1 ;0Þ where the zero part is of length n�ni1 . The
subgenerator matrix of the absorbing CTMC equals

Q ¼

Di1 Hi1i2 0 ⋯ 0
0 Di2 Hi2 i3 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ DiK � 1

HiK � 1iK

0 ⋯ ⋯ 0 DK

0
BBBBBB@

1
CCCCCCA
:

Matrix Q is non-singular since all diagonal blocks are non-singular. Let
M¼ �Q �1, then

μli1 ;…;iK ¼ l!πMl1 ð13Þ
is the lth moment of the weight of the path and

Fi1 ;…;iK ðwÞ ¼ 1:0�πewQ1 ð14Þ
is the probability that the weight of the path less than or equal to w. If
weights are traveling times, then μli1 ;…;iK

is the lth moment of the
traveling time and Fi1 ;…;iK ðtÞ is the distribution function of the
traveling time.

Moments and distribution function can as well be computed
from a discrete time Markov chain (DTMC) resulting from uniformi-
zation [21]. Let αZmaxxAS jQ ðx; xÞjð Þ, then P¼Q=αþI is a stochas-
tic matrix which is the transition probability matrix of an absorbing
DTMC. We have N¼ ðI�PÞ�1 ¼ ðI�ðQ=αþIÞÞ�1 ¼Mα. Furthermore
N¼ P1

k ¼ 0 P
k [27]. Consequently, the moments can be computed

from N rather than M and the probability Fi1 ;…;iK ðwÞ can be
computed using uniformization as follows:

Fi1 ;…;iK ðwÞ ¼ 1:0�πe�αw
X1
h ¼ 0

ðαwÞh
h!

Ph

 !
1 ð15Þ

The infinite sum can be truncated at a finite point with a predefined
error bound [21]. The computation of (15) is more stable than the
direct evaluation of the matrix exponential in (14) as shown several
times in the literature (e.g., [21,41]).

If ði1;…; iK ÞAP and for some LoK ðw1;…;wLÞ ðwl40Þ are the
weights along the first L edges of the path, then the vector

ψ ði1 ;w1 ;…;iL ;wLÞ ¼ πi1 ∏
L�1

l ¼ 1
eDil

wlHil ;ilþ 1

 !
eDiL

wL ð16Þ

describes the distribution after passing the edges i1;…; iL�1 with
weights w1;…;wL�1 and having accumulated weight wL at edge iL.
A natural interpretation for the weights can again be traveling
times. If wL is the traveling time for iL, then the vector describes
the distribution among the states of the PHD for edge iL immedi-
ately before leaving edge iL. If wL¼0, then the vector includes the
distribution immediately after entering edge iL. The vector can be
computed using uniformization as follows:

ψ ði1 ;w1 ;…;iL ;wLÞ ¼ πi1 ∏
L�1

l ¼ 1
e�αil wl

X1
h ¼ 0

ðαilwlÞh
h!

Pil

� �h !
Hil ;ilþ 1

αil

� � !

�e�αiL wL
X1
h ¼ 0

ðαiLwLÞh
h!

PiL

� �h !
ð17Þ

where αil Zmaxx jDil ðx; xÞj
� �

and Pil ¼Q il=αil þI. Let

ψ ði1 ;w1 ;…;iL ;wLÞ ¼
ψ ði1 ;w1 ;…;iL ;wLÞ
ψ ði1 ;w1 ;…;iL ;wLÞ1

ð18Þ

the vector normalized to 1. Then conditional weights of the remain-
ing path through the edges iLþ1;…; iK can be computed from an
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Fig. 2. Sojourn times of entities traveling through queues Q1, Q2, and Q3.
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absorbing CTMC with generator matrix

Q ¼

DiL HiL ;iLþ 1
0 ⋯ 0

0 DiLþ 1
HiLþ 1 iLþ 2

⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ DiK � 1

HiK � 1 iK

0 ⋯ ⋯ 0 DK

0
BBBBBB@

1
CCCCCCA

and initial vector ðψ ði1 ;w1 ;…;iL ;wLÞ;0Þ as described above for the whole
path.

Example 2. As an example we present the small four-node PHG
shown in Fig. 3. The weight distributions of the edges in the PHG
are modeled by PH distributions ðπx;DxÞ, xAfA;B;C;Dg, in hyper-
exponential and Hyper-Erlang representation, and are summar-
ized below. We interpret the weights as traveling times

DA ¼

�0:657 0 0 0
0 �0:721 0 0
0 0 �3:429 0
0 0 0 �4:717

0
BBB@

1
CCCA;

DB ¼

�0:724 0 0 0
0 �3:534 0 0
0 0 �1:085 1:085
0 0 0 �1:085

0
BBB@

1
CCCA;

DC ¼

�0:4745 0 0 0
0 �0:4900 0 0
0 0 �0:5230 0
0 0 0 �0:5940

0
BBB@

1
CCCA;

DD ¼

�0:3000 0 0 0
0 �4:8847 0 0
0 0 �6:8209 0
0 0 0 �8:8200

0
BBB@

1
CCCA:

Initial distributions are given by πA ¼ ð0:4148; 0:1958;0:1851;
0:2043Þ, πB ¼ ð0:5206;0:3858;0:0936;0Þ, πC ¼ ð0:4227;0:2707;
0:1814;0:1252Þ, πD ¼ ð0:3977;0:3945;0:2078; 0Þ. Path ðABÞAP can
be described by an acyclic absorbing CTMC with eight non-absorbing
states as shown in Fig. 4. The generator matrix Q AB equals

QAB ¼

�0:657 0 0 0 0:509 0 0:148 0
0 �0:721 0 0 0:721 0 0 0
0 0 �3:429 0 0:064 3:364 0 0
0 0 0 �4:717 0 4:717 0 0
0 0 0 0 �0:724 0 0 0
0 0 0 0 0 �3:534 0 0
0 0 0 0 0 0 �1:085 1:085
0 0 0 0 0 0 0 �1:085

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

The initial vector of the CTMC Q AB is given by πAB ¼ ðπA; 0;0;0;0Þ.
We compute the first moment from MAB ¼ ð�QABÞ�1 which results
in μ1AB ¼ πABM

AB1¼ 1:9999. Using HCD ¼ cπD, where c¼ ð�DCÞ1 is
the exit vector for the PHD that models the weight distribution of the
edge C, we obtain Q CD and using (13) the expected travel time for the
path CD is μ1CD ¼ πCDM

CD1¼ 3:4377.
The vector ψ ðA;w;B;0Þ is computed using (17) and (18). If we assume

that the traveling time on the edge A was w¼0.5, then the vector
including the distribution immediately after entering the edge B is

ψ ðA;0:5;B;0Þ ¼ πAeDA0:5HABeDB0. We obtain ψ ðA;w;B;0Þ ¼ ð0:5052;0:4064;
0:0884;0Þ. The conditional weights of the remaining path through
the adjacent edge B can be computed from an absorbing CTMC with
a generator matrix containing only the generator DB. The first
conditional moment is ψ ðA;0:5;B;0ÞM

B1¼ 0:9752 in this example. For
wA ½0;2�, the values of the first conditional moment of the traveling
time for the adjacent edge B are shown in Fig. 5.

6. Shortest path computation

For the computation of the shortest path between vini and vfin,
we use a continuous time Markov decision process (CTMDP)
[6,40]. The state space of the CTMDP is given by tuples ði; xÞ where
iAE and xAf1;…;nig is the current phase of the PHD of edge i. For
notational convenience let m be the number of edges and assume
that edges are numbered consecutively. We add an additional state
ð0;0Þ which will be used as the final absorbing state of the CTMDP.
Then the state space S of the CTMDP is defined as

S ¼ fði; xÞj iAf0;…;mg; xAf1;…;nig if i40 and 0 otherwiseg
ð19Þ

S contains n¼ Pm
i ¼ 1 niþ1 states. Define St ¼ S⧹fð0;0Þg as the set

of states without the absorbing state. Let Uði; xÞ be the set of
possible decisions in state (i,x) and quðði; xÞ; ðj; yÞÞ is the transition
rate from state (i,x) into state (j,y) under decision uA Uði; xÞ.
Furthermore, define

quðði; xÞ; ði; xÞÞ ¼ �
X

ðj;yÞAS;ðj;yÞa ði;xÞ
quðði; xÞ; ðj; yÞÞ ð20Þ

In state ð0;0Þ there is only a single decision u and the transition
rates under decision u are quðð0;0Þ; ðj; yÞÞ ¼ 0 for all ðj; yÞAS since
state ð0;0Þ is absorbing. For state (i,x) the set Uði; xÞ ¼ fjj jA i�g if
i�a∅, i.e., the set of all edges which can be successors of edge i,Fig. 3. A four-node PHG containing paths AB, CD from vini ¼ 1 to vfin ¼ 4.

Fig. 4. The absorbing CTMC corresponding to the path AB of the PHG appearing in
Fig. 3.

Fig. 5. The expected traveling time of the adjacent edge B depending on the weight
of edge A.

P. Buchholz, I. Felko / Computers & Operations Research 59 (2015) 51–6556

https://www.researchgate.net/publication/290113970_Chapter_8_Markov_decision_processes?el=1_x_8&enrichId=rgreq-a47e9335525fc751a083f054cbaa62cb-XXX&enrichSource=Y292ZXJQYWdlOzI3MjAyODYzMDtBUzo0MTA4NzMxNDg1MjY1OTJAMTQ3NDk3MTIwMDE3Ng==


and Uði; xÞ ¼ f0g, if i� ¼∅. We can use the notation U(i) rather than
Uði; xÞ because the set does not depend on x. The transition rates
for jAUðiÞ are defined as follows:

qjðði; xÞ; ðh; yÞÞ ¼

Diðx; yÞ if h¼ i;
Hi;jðx; yÞ if h¼ j40;

�
Xni
y ¼ 1

Diðx; yÞ if h¼ j¼ 0 ð) y¼ 0Þ;

0 otherwise:

8>>>>>>><
>>>>>>>:

ð21Þ

The PHG defines a CTMDP with an absorbing state. We consider
the computation of an optimal path in two different scenarios,
which have already been described in the previous section for the
analysis of a path. First, a path with a minimal expected weight
starting in vini and ending in vfin should be computed. Second, we
compute a path that maximizes the probability of reaching vfin
with a weight of at most w. If we interpret the weights as traveling
times, this corresponds to a path that maximizes the probability of
reaching the destination in the interval ½0;w�.

We begin with the first problem that corresponds to the
stochastic shortest path problem (see [6, Section 2]). First uni-
formization is applied to transform the CTMDP into a discrete time
Markov decision process (DTMDP) [6, Section 5.1] or [44].

Let αZmaxði;xÞAS maxuAUðiÞ jquðði; xÞ; ði; xÞÞjð Þ� �
and define

puðði; xÞ; ðj; yÞÞ ¼
quðði; xÞ; ðj; yÞÞ=α if ði; xÞa ðj; yÞ
1þquðði; xÞ; ðj; yÞÞ=α if ði; xÞ ¼ ðj; yÞ

(
ð22Þ

The transformation implies that puðði; xÞ; ðj; yÞÞZ0 and
P

ðj;yÞAS
puðði; xÞ; ðj; yÞÞ ¼ 1 for all ði; xÞAS and uAUðiÞ. Consequently, the
new values define a DTMDP. We choose reward values for the
states such that the reward for state (i,x) is 1 for ði; xÞað0;0Þ and
0 for ði; xÞ ¼ ð0;0Þ.

A policy assigns to each state ði; xÞAS a decision uAUðiÞ. If the
policy depends only on the state, it is denoted as stationary. U is
the set of all stationary policies. Stationary policies can be defined
by vector u such that uði; xÞAUðiÞ. Let Pu be a jSt j � jSt j matrix
with Puðði; xÞ; ðj; yÞÞ ¼ puði;xÞðði; xÞ; ðj; yÞÞ for ði; xÞ; ðj; yÞASt . Depending
on the choice of u, matrix Pu can be stochastic or substochastic.

A policy is proper if it reaches the absorbing state with probability

1, i.e.,
P1

k ¼ 0 ðPuÞk is finite. In this case, Nu ¼ ðI�PuÞ�1 ¼P1
k ¼ 0 Pu� �k exists and Nuðði; xÞ; ðj; yÞÞ is the mean number of visits

of state (j,y) before the absorbing state is reached starting from state

(i,x) (see [27]). Then

ξuði; xÞ ¼
X

ðj;yÞAS
Nuðði; xÞ; ðj; yÞÞ ð23Þ

is the mean number of steps before entering the absorbing state
from (i,x) and ξuði; xÞ=α is the expected weight of the corresponding
CTMC resulting from policy u applied to the CTMDP.

A proper policy exists because each matrix Di is non-singular
and limt-1eDi t ¼ 0 such that the PHD for edge i is eventually left
and starting from an arbitrary edge, a path to the vertex vfin that
corresponds to the absorbing state exists by assumption.

If policy u does not assure that from every state the absorbing
state is eventually reached, then

P1
k ¼ 0 ðPuÞk does not converge

which implies that some of the elements in the resulting matrix
converge to infinity for k going to infinity. In this case policy u is
denoted as improper.

We can now use the results of [6] to compute the optimal
stationary policy and the corresponding weight. The two condi-
tions, that a proper policy exists and for each improper policy
some values in the matrix tend to infinity are necessary and
sufficient for the existence of an optimal stationary policy (see
[6, Section 2]).

For a stationary policy u let

wu ¼
X1
k ¼ 0

ðPuÞk1¼Nu1 ð24Þ

be the weight vector. Elementwuði; xÞ is the expected weight of the
path from state (i,x) to ð0;0Þ under policy u. If the policy is proper,
then wu can be computed as the solution of

ðI�PuÞwu ¼ 1: ð25Þ

Let un be an optimal policy with weight vector wn, then

wnði; xÞ ¼min
uAU

wuði; xÞ� �
: ð26Þ

un and wn can be computed using linear programming, value
iteration or policy iteration [6]. We briefly describe the computa-
tion via policy iteration which is often the most efficient approach.

Initially we define some proper policy which for example can
be derived by running a shortest path algorithm on the problem
where PH distributions are substituted by their expectations and
correlations are neglected. Let uð0Þ be the corresponding policy.
Then the following algorithm is used.

Algorithm 1. To minimize the mean weight.

Input: Set of policies U and matrices Pu;
Output: Weight vector wn and policy un;
k¼0;
find a proper initial policy uðkÞ;
repeat

solve ðI�PuðkÞ ÞwðkÞ ¼ 1;
k¼ kþ1;
compute an improved policy uðkÞ for all ði; xÞAS as

uðkÞði; xÞ ¼ arg minuAUði;xÞ
P

ðj;yÞASp
uðði; xÞ; ðj; yÞÞwðk�1Þðj; yÞ

� �
;

until uðkÞ ¼ uðk�1Þ;
wn ¼wðkÞ and un ¼ uðkÞ;
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The algorithm computes a sequence of policies with decreasing
weight vectors and converges towards an optimal policy un. Since
for improper policies some values in the weight vector become
infinite and we start with a proper policy, all computed policies
are proper. The effort of the algorithm results from the solution of
systems of linear equations for new policies. These systems can be
solved with a direct or an iterative solver. With a direct solver the
effort is cubic in the number of states, whereas an iterative solver
requires a variable number of iterations which is often fairly small
if the iteration is started with the solution vector resulting from
the previous policy. We will consider an example in Section 7.

The final step is the computation of the edge where the
shortest path starts. Define for iAEini ai ¼ ð0o i; πi;04 iÞ where
0o i is a zero row vector of length

P
jAE;jo inj and 04 i is a zero

row vector of length
P

jAE;j4 inj. Then the initial edge is chosen as

in ¼ arg min
iAEini

ðaiwnÞ ð27Þ

and the weight of the shortest path equals

ξn ¼ ai
n

wn ð28Þ
which equals ξn=α in the original CTMDP.

The decisions resulting from the algorithm depend on the
states of the PHD which are not part of the real system. In the
real system decisions have to depend on accumulated weights
using the vectors ψ ði1 ;w1 ;…;iL ;wLÞ computed with (17) and (18). The
subsequent edge at vertex finðiLÞ after passing the edges i1;…; iL
with weights w1;…;wL is then computed as

in ¼ arg min
jAUðiLÞ

XniL

x ¼ 1

ψ ði1 ;w1 ;…;iL ;wLÞðiL; xÞ
 

�
XniL
y ¼ 1

pjððiL; xÞ; ðiL; yÞÞwnðiL; yÞþ
Xnj

y ¼ 1

pjððiL; xÞ; ðj; yÞÞwnðj; yÞ
 !!

ð29Þ
The initial edge in depends on the weights of edges that have been
passed and it is independent of the states of PHDs.

The second problem, namely finding the maximal probability
to reach vfin with a weight less or equal to w, is harder to solve.
One can approximate the optimal policy using discretization based
on the results of [30]. Define a discretization factor Δ¼w=K for
some K40. Then define for ði; xÞAS and uAUðiÞ

ruðði; xÞ; ðj; yÞÞ ¼
Δquðði; xÞ; ðj; yÞÞ if ði; xÞa ðj; yÞ
1þΔquðði; xÞ; ði; xÞÞ if ði; xÞ ¼ ðj; yÞ:

(
ð30Þ

For policy uAU define matrix Ruðði; xÞ; ðj; yÞÞ ¼ ruði;xÞðði; xÞ; ðj; yÞÞ.
Observe that matrix Ru is a matrix over S rather than St , i.e., the
absorbing state is included. If Δ is small enough, Ru is a stochastic
matrix and

eΔQ
u ¼

X1
k ¼ 0

ΔQu

k!
¼ RuþoðΔ2Þ: ð31Þ

Thus, matrices Ru can be used to approximate the optimal policy and
probability. Let zðKÞ be a vector with zðKÞði; xÞ ¼ 0 for ði; xÞa ð0;0Þ and
zðKÞð0;0Þ ¼ 1. Then the following algorithm can be applied.

Algorithm 2. To maximize the weight in a given time interval.

Input: Set of policies U , matrices Ru and vector zðKÞ;
Output: Weight vector zð1Þ and policy uðkÞ for k¼ 1;…;K�1;

for k¼K-1 downto 1
compute policy uðkÞ for all ði; xÞAS as

uðkÞði; xÞ ¼ argmax
uAUði;xÞ

P
ðj;yÞASr

uðði; xÞ; ðj; yÞÞzðkþ1Þðj; yÞ
� �

;

zðkÞ ¼ RðuðkÞÞzðkþ1Þ;

The initial edge is chosen as

in ¼ arg max
iAEini

aizð1Þ
� �

ð32Þ

and the maximal probability is given by

χn ¼ ai
n

zð1Þ: ð33Þ
Using the results of [30] it can be shown that the computed value
and policy converges towards the optimal values of the continuous
problem for Δ-0 which means N-1. The resulting policy
depends on the state and the remaining weight until the final
state has to be reached.

A more efficient approach to compute the optimal policy is
based on uniformization and allows one to compute lower and
upper bounds for χn and a policy that reaches at least the lower
bound [15]. However, since this algorithm is more complex, we do
not present it and refer for details to the literature.

Again, the decision in the real system cannot be made based on
the detailed state of a PHD and instead has to be based on vector
ψ ði1 ;w1 ;…;iL ;wLÞ. Since we apply a discretization approach, the values
wl have to be multiples of step Δ. In practice this means that
measured values have to be rounded which is not critical if Δ is
small enough. We assume that wl ¼ klΔ for klAN. Let k¼ PL

l ¼ 1 kl,
then the optimal decision at kΔ can be approximated using (29)
with vector zðkÞ rather than wn.

7. Complexity issues

To use the approach for real applications, the computational
effort has to be moderate. This implies that models can be
parameterized and analyzed within a few minutes at most. The
whole approach consists of different steps for which often alter-
native algorithms exist. We briefly analyze the effort and start
with the algorithms for building the model which means that the
parameters for the PHDs and the transfer matrices have to be
computed from measured values. Afterwards algorithms for short-
est path computation are analyzed.

For parameterization usually data is available from measure-
ments or simulations. Depending on the application area such
traces contain between a few hundred and several millions of
entries. As shown in Section 4, algorithms for the computation of
PHD parameters can either use moments and joint moments or
the whole trace in an EM algorithm.

The effort for computing empirical moments and joint moments
from traces of length d is in O(d). After moments and joint moments
are available, the remaining computations are independent of the
trace length. If PHDs parameters are fitted according to the first 2 or
3 moments, then closed form expressions are available [8] such that
the computation time is negligible. If more than three moments
should be matched, then the exact but not always feasible approach
from [25] or the approximation approach from [14] have to be used.
The former requires some numerical computations with an effort
growing exponentially in the number of phases. The latter uses an
iterative approach that includes a non-linear optimization problem
with n variables for a PHD of order n. Since the approach is iterative,
an exact analysis of the effort is impossible. However, for moderate
n (values of 10 or less), the computation requires in both cases
usually only a few seconds.

Computation of the elements of the transfer matrix to match the
joint moments requires the solution of a linear non-negative least
squares (NNLS) problem (Eq. (8)). The standard algorithm for the
solution of NNLS problems is iterative and has been published in
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[29]. Although the algorithm is guaranteed to find the exact
solution, up to numerical inaccuracies, the effort has not been
analyzed yet. However, the algorithm is usually extremely fast if the
number of variables is not too large. As an example we consider the
computation of a transfer matrix of order 10 according to the joint
moments EðXk

i ;X
l
jÞ (k; l¼ 1;…;9) which requires 0.2 s on a standard

PC. Moment based fitting uses usually only a small number of
moments or joint moments and is then very efficient. Therefore it
can be applied for small PHDs with less than 10 phases even in
online situations where the weights are computed immediately
after new measurements become available.

The effort for EM algorithms is significantly higher than the effort
for moment based fitting methods. However, EM methods approx-
imate the measured density such that they often yield better results
for multimodal densities or if the correlation structure contains
multiple peaks which can only roughly be approximated by fitting
methods based on lower order moments or joint moments. The effort
for EM algorithms depends linearly on the number of elements in the
trace. If the elements in the transfer matrix are generated by an EM
algorithm as in (10), then the effort is also linear in the number of
non-zero elements in matrix Hij. Furthermore, (10) contains two
matrix exponentials πiewiDi and ewjDj ð�DjÞ1 which have to be com-
puted for each trace element. Computation of πewD requires
Oðw maxx jDðx; xÞj Þ iterations with an effort of OðnzðDÞÞ, where
nzðDÞ is the number of non-zero entries in D, using uniformization
[41]. Thus, the overall effort for computing Hij is in O it � dij � nzðHijÞ

��
þwi maxx jDiðx; xÞjnzðDiÞþ maxy jDjðy; yÞjnzðDjÞÞÞ, where it is the
number of EM iterations that depends on the required stopping
criterion and the structure of the problem. EM algorithms can also be
applied to determine the matrices Di. In this case the effort is in
O it � di � nzðDiÞð �wi maxx jDiðx; xÞj Þ and can be reduced for specific PH
distributions like Hyper-Erlang [50] or by first aggregating the elements
of the trace [37].

The proposed fitting methods all compute parameters for a
PHD of a given order. To match the first 2 or 3 moments, two
phases are sufficient if the coefficient of variation is not too small.
If an EM algorithm is used to maximize the likelihood, then a
larger number of phases usually result in a larger likelihood value
but a larger number of phases also result in longer runtimes of the
EM algorithm and more states in the DTMDP. Thus, a compromise
between fitting quality and effort has to be found. A heuristic
approach starts the EM algorithm with a small number of phases
and increases the number of phases until the differences in the
likelihood values become small or a maximal number of phases
has been reached. We apply this approach in the following
example and use the software gfit [50] for parameter fitting.

As an example we consider the traveling times of vehicles on one
of the main streets of Cologne which have been derived from the
dataset given in [1] (see also the example presented in Section 8).

The trace contains traveling times of 792 cars. The empirical density
of the traveling time is shown in Fig. 6. The expectation, coefficient of
variation and skewness of the traveling time are 5.29, 1.44 and 7.68,
respectively.

The first three moments of the trace can be matched exactly by a
PHD with two phases. Additionally, we use the EM-algorithm of the
tool gfit to fit the parameters of Hyper-Erlang distributions with a
growing number of phases. After the Hyper-Erlang distribution is
available, it is possible to adjust the parameters to fit the first three
moments of the trace. This step usually reduces the likelihood value
slightly and is described in [50]. The first moment is always exactly
matched by the PHD resulting from an EM algorithm. Table 1
contains the results. The first column includes the number of
phases. In the columns 2–6 the results for the EM algorithms
without subsequent moment fitting are shown. In the last two
columns the results for the EM algorithmwith subsequent moment
fitting (n¼3,…,50) and a simple moment fitting (case n¼2) are
presented. With moment fitting in all cases the first three moments
and thus also the coefficient of variation and the skewness are
matched exactly by the PHDs. Therefore these values are not shown
in the table. The column time contains the runtimes of the
algorithm in seconds on a PC with a 2.5 GHz Quad-Core processor
and 4 GB main memory. It can be seen that within 10 s the EM
algorithm can compute PHDs with 1–12 phases and within 1 min
PHDs with 1–20 phases are generated. If the number of phases
grows, then also the effort grows. The runtime of the algorithm can
probably be further reduced by restricting the search space if PHDs
are generated consecutively from the same data set.

For the selection of an appropriate PHD, the values of the
likelihood function should be analyzed. The likelihood value for
the pure moment fitting is much worse than the likelihood values
of the PHDs resulting from the EM algorithm. The likelihood values
of the PHDs resulting from the EM algorithm increase with the
number of phases but the gradient varies significantly. Thus, the
steps from 3 to 4 and then to five phases result in a better fitting.
Afterwards from 6 to 9 phases the likelihood remains more or less
the same. The next step in the likelihood can be observed for 10
phases. The flexibility of PHDs allows one to choose from a set of
distributions. In our example the PHDs with 3, 5 or 10 phases are
good choices, much better than the PHD with two phases resulting
from moment fitting. The empirical density of the trace and the
densities of some PHDs are shown in Fig. 6.
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Fig. 6. Empirical density and densities of some PHDs.

Table 1
Moments, likelihood values and fitting times for different PHDs that are fitted
according to the traveling time.

n E(T) CV Skew Log likel Time Log likel Time

Moment fitting

2 – – – – – �2066.0 0.00

EM without moment fitting EM with mom. fit.

3 5.29 1.69 11.52 �1881:4 0.14 �1887:2 0.16
4 5.29 1.62 11.26 �1820:4 0.21 �1829:6 0.23
5 5.29 1.57 10.97 �1806:9 0.27 �1818:1 0.30
6 5.29 1.45 9.06 �1806:6 0.32 �1809:8 0.35
7 5.29 1.41 8.22 �1806:1 0.35 �1807:8 0.38
8 5.29 1.52 10.09 �1805:8 0.63 �1811:7 0.66
9 5.29 1.59 11.13 �1805:1 1.01 �1816:1 1.05

10 5.29 1.62 11.27 �1796:8 1.57 �1807:3 1.61
12 5.29 1.64 11.36 �1780:0 2.60 �1790:0 2.64
15 5.29 1.63 11.28 �1756:3 3.87 �1767:0 3.92
20 5.29 1.60 10.99 �1725:9 10.68 �1737:8 10.74
25 5.29 1.57 10.69 �1703:1 25.19 �1717:1 25.92
30 5.29 1.53 10.32 �1687:2 46.37 �1702:2 46.45
40 5.29 1.53 10.25 �1669:8 128.48 �1687:4 128.59
50 5.29 1.52 10.10 �1661:1 328.24 �1669:9 328.36
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To evaluate the approximation quality of PHDs one can com-
pare them with other distributions used in statistical modeling.
We used the arena input analyzer [42] to find distributions that
model the data set. The two best distributions are 0.999 þ Weibull
(4.02, 1.1) and (0.999 þ) Gamma (3.79, 1.13) where 0.999 is a
constant offset. The likelihood values for these distributions are
�1954.0 and �2481.4. All PHDs resulting from the EM algorithm
provide a larger likelihood which shows that even PHDs with a
small number of phases are a valuable model for the data. This
finding confirms results for failure data in [16].

The example shows that for traces with a few hundred entries,
like most vehicular traffic traces, the fitting can be performed
efficiently. The situation is different for traces from computer
networks which may contain more than a million entries. If EM
algorithms are applied without any preprocessing the effort can be
huge. However, by first using trace aggregation, also in these cases
PHDs of moderate order can be generated within a few seconds.

For a PHG with m edges where an edge has in the average s
successor edges, m PHDs and ms transfer matrices have to be
determined. Parameter fitting of the matrices Di and afterwards of
the matrices Hij are independent such that the matrices can be
computed in parallel. Thus, in most relevant situations PHGs can
be generated from available data in an acceptable time which
means that at most a few minutes are necessary to compute all
required matrices.

The effort of the shortest path computation depends on the size
and the structure of the CTMDP. Computation times are often
moderate even for fairly large CTMDPs, in particular, if the graph is
(almost) acyclic. This will be shown by a simple example.

The example graph shown in Fig. 7 contains N levels with two
nodes in each level plus an initial and a final node. Nodes in the
levels 0 through N�1 allow choices between two outgoing edges.
The weights of the edges are modeled by PHDs that have been
generated with respect to the traveling times described above.
Transfer matrices are a generated from a convex linear combination
of the transfer matrix for the minimal and maximal correlation
between adjacent edges. Weights of the convex combination are
randomly selected for every pair of adjacent edges. The example
model with N level contains 2Nþ2 nodes and 4N edges. If weights

are modeled with PHDs with ni phases, the resulting CTMDP has
4N � ni states.

First, the computational effort of Algorithm 1 in Section 6 to
minimize the mean traveling time from the initial to the final node
is analyzed for the graph with a growing number of levels and
weights modeled by PHDs with 3, 5 and 10 phases. Two versions of
the algorithm are considered. In the first version (mean direct) the
linear equations are solved using an LU-decomposition with an
effort cubic in the number of states. The required time to compute
the optimal policy is shown in Fig. 8. It is also possible to solve the
linear equations in Algorithm 1 by an iterative technique. In our
implementation we applied GMRES with an ILU0 preconditioner
[43]. This method is extremely fast for the equations occurring in
the example. Policy iteration requires less than 20 policy iterations
to find the optimal policy and GMRES requires very few, usually
less than 10, iterations to compute the solution for the set of
equations that results from a new policy, if the method is started
with the solution vector of the previous policy. The effort of the
direct method depends only on the number of states of the CTMDP
and not on the number of phases of the PHDs. The effort for the
iterative technique is also mainly determined by the number of
states but it can be seen that for the PHD with 10 phases, GMRES
requires slightly more iterations which slows down the solution in
some cases. With the iterative technique within 200 s optimal
policies for CTMDPs with almost 10 million states can be com-
puted. This corresponds to a graph with 1 million edges if edge
weights are modeled by PHDs with 10 phases. However, it should
be mentioned that the example is acyclic and optimal policies can
be computed very efficiently. In graphs with many cycles the effort
is higher but normally still large graphs can be handled.

The second result which is computed is the maximal prob-
ability to reach the final node from the initial node within the
expected traveling time under a random selection of the successor
edge. With a growing number of levels also the time horizon
grows in this case. Algorithm 2 is used to compute the probability.
In the algorithm, discrete steps are used and the effort depends
linearly on the inverse of the length of the discretization step. The
curves in Fig. 9 show the effort for different choices of the
discretization interval length and for PHDs with 3, 5 and 10 phases
describing the weights of the edges. The computational effort
depends on the number of states of the CTMDP, the size of
discretization step and the number of phases of the PHD. For a
larger number of phases, the method becomes faster if we fix the
other two parameters. The reason is that for a larger number of
phases and a fixed number of states the number of levels and also
the expected time to reach the destination is smaller. In general,
the computation of an optimal policy for the finite horizon case

...

...

0 1 2 N−1 N N+1

Fig. 7. Acyclic example graph for shortest path computation.
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(with Algorithm 2) requires more effort than the computation of
the expected weight (with Algorithm 1).

Of course, the results of experiments for one example should
not be generalized. However, results for this and similar examples
show that the available methods allow one to compute optimal
policies for fairly large state spaces in a moderate time of a few
minutes at most. This means that the models can be applied in
many realistic situations and even in some online situations.

8. A realistic example

We present the shortest path computation in a real traffic
network containing some of the main streets of the city Cologne,
namely the Niehler Strasse, Neusser Strasse, and the Innere
Kanalstrasse where congestion often occurs. The weights of the
edges describe traveling times of vehicles and have been derived
from the dataset given in [1]. The PHG has two paths from initial
node 1 to the destination node 4 and is shown in Fig. 10.

The destination can be reached via the initial edge A and two
adjacent edges B or C plus some successor edges to reach the final
destination. The weight of the edge A is correlated with the weight
of the adjacent edge B. Thus, edge B is usually congested if the
predecessor edge A is congested. The edge C is assumed to be a
detour and its weight is independent of the weight of the pre-
decessor edge A.

The weights from the dataset were used for fitting PHDs of
order ni, ðni ¼ 1;…;20Þ, using the software gfit (see, e.g., [50]). The
values of the log-likelihood function according to the traces are
shown in Fig. 11.

The PH-approximation becomes better with an increasing num-
ber of phases which is represented by the rise in the curves shown
in Fig. 11. However, the tendency is that the largest slope can be
observed up to six phases, i.e. adding additional phases ðn46Þ
increases the log-likelihood values only slightly. The log-likelihood
of the PHD for the initial edge A converges against �2063.92251 as
shown in Fig. 11. We also tried other fitting tools likemomfit or phfit
[14,24], but only gfit generates the hyperexponential representation
which has the largest flexibility for the subsequent fitting according
to the correlation [13]. From Fig. 11 we conclude that the traces are
fitted adequately by PHDs with six phases.

Table 2 shows the maximum value of the coefficient of correlation
which can be modeled if weights of edge A and B are described by

PHDs of an increasing order. Again it can be seen that with an
increased number of phases the coefficient of correlation that can be
represented grows. Again for a number of phases n between 6 and 20
no major improvement in the reachable coefficient of correlation can
be achieved which is again an argument to choose PHDs of order
6 for the example.

The following acyclic PHDs of order 6 are computed according
to the traffic traces of the edges A through G:

πA ¼ 0:01614;0:49193;0;0:24597;0;0:24597ð Þ;

DA ¼

�0:01968 0 0 0 0 0
0 �0:21991 0:21991 0 0 0
0 0 �0:43981 0 0 0
0 0 0 �0:43981 0:43981 0
0 0 0 0 �0:87962 0
0 0 0 0 0 �0:87962

0
BBBBBBBB@

1
CCCCCCCCA
:

πB ¼ 0:47669;0:14445;0:18822;0:09532;0;0:09532ð Þ;

DB ¼

�0:01786 0:01786 0 0 0 0
0 �0:07680 0:07680 0 0 0
0 0 �0:07680 0:03840 0 0:03840
0 0 0 �0:09377 0:09377 0
0 0 0 0 �0:18755 0
0 0 0 0 0 �0:18755

0
BBBBBBBB@

1
CCCCCCCCA
:

πC ¼ 0:99999;0;0;3:98773e�06;0;0ð Þ;

DC ¼

�0:07095 0:07095 0 0 0 0
0 �0:07095 0:07095 0 0 0
0 0 �0:07095 0 0 0
0 0 0 �0:18958 0:18958 0
0 0 0 0 �0:18958 0:189581
0 0 0 0 0 �0:18958

0
BBBBBBBB@

1
CCCCCCCCA
:

πD ¼ 1;0;0;0;0;0ð Þ;
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Fig. 11. Log-likelihood values for PHDs of order i, i¼ 1;…;20.

Table 2
Impact of the PHD order on the correlation for the
PHD ðπA;DAÞ and the PHD ðπB ;DBÞ.

PHD order ρAB

2 1:3643e�05
3 0.027237
4 0.18756
5 0.18758
6 0.19576
9 0.19577

11 0.19726
13 0.19751
15 0.19754

Fig. 10. The PHG with E ¼ fA;B;C;D; E; F;Gg.
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DD ¼

�0:42893 0:42893 0 0 0 0
0 �0:42893 0:42893 0 0 0
0 0 �0:42893 0:42893 0 0
0 0 0 �0:42893 0:42893 0
0 0 0 0 �0:42893 0:42893
0 0 0 0 0 �0:42893

0
BBBBBBBB@

1
CCCCCCCCA
;

πE ¼ 0:09701;0:90298;0;0;0;0ð Þ;

DE ¼

�0:01951 0 0 0 0 0
0 �1:37078 1:37078 0 0 0
0 0 �1:37078 1:37078 0 0
0 0 0 �1:37078 1:37078 0
0 0 0 0 �1:37078 1:37078
0 0 0 0 0 �1:37078

0
BBBBBBBB@

1
CCCCCCCCA
;

πF ¼ 0:16103;0:83897;0;0;0ð Þ;

DF ¼

�0:46405 0 0 0 0 0
0 �0:33057 0:33057 0 0 0
0 0 �0:33057 0:33057 0 0
0 0 0 �0:33057 0:33057 0
0 0 0 0 �0:33057 0:33057
0 0 0 0 0 �0:33057

0
BBBBBBBB@

1
CCCCCCCCA
;

πG ¼ 0:00263;0:99737;0;0;0;0ð Þ;

DG ¼

�0:00768 0 0 0 0 0
0 �0:51913 0:51913 0 0 0
0 0 �0:51913 0:51913 0 0
0 0 0 �0:51913 0:51913 0
0 0 0 0 �0:51913 0:51913
0 0 0 0 0 �0:51913

0
BBBBBBBB@

1
CCCCCCCCA
:

The coefficient of correlation between edge A and B equals
ρAB ¼ 0:264. Matrix HAB is computed according to the joint
moments (Eq. (8)). The resulting transfer matrix equals

HAB ¼

0:01968 0 0 0 0 0
0 0 0 0 0 0

0:41176 0:02805 0 0 0 0
0 0 0 0 0 0
0 0:40437 0:47526 0 0 0
0 0 0:19786 0:34088 0 0:34088

0
BBBBBBBB@

1
CCCCCCCCA
; ρAB ¼ 0:19576:

Now suppose that a traveler has traversed edge A and the current
position is at node 2. There are two competing options for the next
possible edge to visit from node 2, namely the edges B and C. In any
case, the traveler's objective is to select the next edge to traverse such
that the expected time until arriving at the destination node 4 is
minimized. The initial proper policy equals u0 ¼ fA;C; E; F;Gg and
results from a simple shortest path computation neglecting distribu-
tions or correlations. The weight of policy u0 equals 73.1208, and the
weight of the alternative policy u1 ¼ fA;B;Dg equals 75.2639. If we
take correlated travel times on adjacent edges into consideration, the
optimal policy has to be determined depending on the time required
to pass edge A.

The behavior of the optimal policy is as follows: for a long time
required on the edge A, the best decision is to choose the adjacent
edge C, since traveling on edges A and B is positively correlated. If
the time required for the edge A becomes smaller, then the
optimal choice is edge B. This means that from a phase where
the remaining time before absorption (i.e., the remaining time to
reach node 2) is longer than the average, C should be chosen as
successor and otherwise B.

In the real system decisions cannot depend on the phase, they have
to depend on the vectors ψ ði1 ;w1 ;…;iL ;wLÞ computed with (17) and (18).
We computed vectors ψ ðA;w;iJ ;0Þ withwA ½0:1;80�, JAfB;Cg. The values
of the first conditional moments of the traveling time for the adjacent
edges are summarized in Fig. 12. Results are computed for PHDs with
4, 6, 11, and 15 phases. In Fig. 12 the notation PHB is used for the PHD
with representation ðπB;DBÞ.

Fig. 12 shows the expected traveling times at the adjacent edges
B and C depending on the traveling time at edge A. The time at C is
not affected by the traveling time at A since both weights are
independent. The positive correlation between the weights at the
edges A and B results in a positive slope of the expected traveling time
at B. It can be seen that the curves for the PHDs of different orders
slightly differ. However, the difference occurs mainly for small
traveling times at edge A, for larger values the curves are almost
identical for all numbers of phases shown in the graph.
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Fig. 12. The expected traveling time for the adjacent edges B, and C depending on
the weight of edge A.
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Using the vectors ψ ði1 ;w1 ;…;iL ;wLÞ the conditional weights of the
remaining path through the edges B, D and the remaining path
through the edges C, E, F, G can be computed. The best subsequent
edge at vertex 2 after passing the initial edge A with weight w can
then be computed with (29) such that the decision depends on the
previous weights of the edge A and not on the state of the PHD. The
values of the conditional first moments of the traveling time for the
remaining paths are shown in Fig. 13. Again it can be seen that curves
for the PHDs of different orders differ slightly for small traveling times
at edge A and are very similar for larger traveling times at A.

Additionally, we consider the computation of the path that
maximizes the probability of reaching the destination node 4 with
a weight of at least w. The presented model is analyzed for path

weights in the interval [20,200]. We use Δ¼w=N for a large
N¼300,000 and solve the resulting DTMDP for a horizon of N steps.
The results computed with the discretization approach are shown in
Fig. 14 for models with PHDs of different orders. In the examples
weights at all edges are described by PHDs of a common order.
Again it can be seen that there is only a small difference between
the results of the examples using PHDs of different orders. The
positive correlation results in a higher probability for the first path
to meet a short deadline but in a slightly smaller probability to meet
a long deadline.

Finally, we analyze the probabilities of meeting various dead-
lines via the path fB;Cg and fD; E; Fg depending on the time needed
to pass A. Results are shown in Fig. 15.
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Fig. 15. Probabilities of arriving on time for different deadlines depending on the traveling time at the initial edge A.
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Again it can be noticed that for a short traveling time via A it is
better to choose the route via B and D. If the time horizon to reach the
destination increases, then the traveling time via A for which is
preferable to choose the route via B rather than via C becomes smaller
and smaller. The reason for this behavior is the relatively large variance
of the traveling time of edge B. It can also be seen that the number of
phases of the PHDs has some effect on the computed probability if the
traveling time at A and the time horizon are small.

The MDPs resulting from the example are very small withP7
i ¼ 1 niþ1 states, where ni equals the number of phases of the

PHDs for the traveling time at the ith street. Since the graph
acyclic, computational times are all negligible.

9. Conclusions

In this paper we investigate two problems of route planning
under uncertainty with dependent weights on adjacent edges of a
weighted graph: finding a path with a minimal expected weight
and selecting a path that maximizes the probabilities of paths with
a weight below a threshold. The proposed framework of weighted
graphs with correlated weights is based on phase type distribu-
tions (PHDs), Markovian arrival processes (MAPs) and continuous
time Markov decision processes (CTMDPs). PHDs, a versatile class
of distributions, allow the modeling of general distributions of the
weights. The basic idea of MAPs, namely marked transitions to
indicate events, is used to introduce correlations between the
weights of adjacent edges. We denote the resulting graph model as
PH graphs (PHGs) and show how the problem of finding of an
optimal route in a PHG can be mapped on a CTMDP and handled
with standard algorithms like policy iteration. Results of some
examples indicate that the effect of correlation between edge
weights should not be neglected when solving stochastic shortest
path problems. Depending on the weight of the previous edge
choosing a correlated adjacent edge could result in a much better
path weight than the choice of an uncorrelated adjacent edge.

Our main interest in this paper was the definition of the class of
PHGs and methods for the parameterization of models including
dependencies that are based on measurements resulting from real
systems or simulation models. For shortest path computation we
applied standard approaches from stochastic dynamic programming.
PHGs can be used to model various practical problems like route
finding on streets, routing in computer networks or reliability analysis
of systems built from components with correlated failure rates.

The approach of this paper can be extended in various directions.
More sophisticated measures like discounted weights or the opti-
mization of the average weight under some variability constraints
may be used as goal functions for an optimal route by adopting
methods from MDPs. It is sometimes possible to improve the
algorithms for policy computation by exploiting the specific struc-
ture of the problem which often results in acyclic paths such that
optimal decisions can be computed by considering one edge at a
time. The model class is extendable by allowing for example time-
dependent weights which result in an inhomogeneous CTMDP. It is
in principle also possible to define weights that depend on the
weight of more than one predecessor edge. However, this modeling
requires the introduction of additional states to code the exit states
from previous PHDs and results in an exponential increase of the
dimension of the transfer matrices such that from a practical point
of view dependencies have to be restricted.
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