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Lemma 3.1. Let P = (S,A, Tl, Rl, P r) be a SBMDP. Let furthermore π, π′

be two policies where π′ lies on the Pareto frontier. Then there exists a finite
sequence of policies π = π0, π1, . . . , πN = π′ where d(πi, πi+1) = 1,v(πi) 6>
v(πi+1) and, additionally, N ≤ |S|.

Proof. We provide a proof by induction on d(π, π′). For d(π, π′) ∈ {0, 1}, the
statement holds obviously.

For d(π, π′) = c > 1, the induction hypothesis is that the statement holds for
c− 1. This means that for each policy π1 with distance d(π1, π

′) = c− 1 there
exists a sequence of policies π1, π2, . . . , πc = π′ such that for any two adjacent
policies πi, πi+1 it is v(πi) 6> v(πi+1).

To show the induction step, we must infer the statement for d(π, π′) = c.
Suppose now for the sake of contradiction that it is not the case. We observe
that under this assumption, for each state s ∈ S, the policy π(s,π′(s)) that results
from changing π in state s to choose action π′(s) results in a value vector that

is dominated by v(π), i. e., v(π) > v(π(s,π′(s))). Let us now consider a restricted

SBMDP P [π,π′] = (S,A[π,π′], T
[π,π′]
l , R

[π,π′]
l ) where the available actions are only

those used in either π or π′, that is, A[π,π′] = {a, b} and the matrices P in T
[π,π′]
l

are constructed with p
[π,π′]a
s,s′ = p

π(s)
s,s′ and p

[π,π′]b
s,s′ = p

π′(s)
s,s′ . The reward function

is defined analogously by R
[π,π′]
l =

(
(r

[π,π′]a
↓ , r

[π,π′]a
↑ ), (r

[π,π′]b
↓ , r

[π,π′]b
↑ )

)
with

r
[π,π′]a
↓s = r

π(s)
↓s , r

[π,π′]a
↑s = r

π(s)
↑s

r
[π,π′]b
↓s = r

π′(s)
↓s , r

[π,π′]b
↑s = r

π′(s)
↑s .

It is easy to see that the policies π and π′ can be executed in the new
SBMDP P [π,π′]. As all action changes from π lead to smaller value vectors in
each component, we can see that π is locally optimal for each component, and
thus, π is optimal for all components. Hence, π is an optimal policy in P [π,π′].
Furthermore, π′ is then dominated by π in all states and all components in
P [π,π′] as well as in P. Consequently, π′ cannot lie on the Pareto frontier, which
contradicts the initial assumption.

As we have arrived at a contradiction, we conclude that there must exist a

state s where it is v(π) 6> v(π(s,π′(s))), and, since d(π(s,π′(s)), π′) = c−1 and d(·, ·)
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can never exceed |S|, there exists, by induction hypothesis, a sequence of policies
π(s,π′(s)) = π1, π2, . . . , πc = π′ for which v(πi) 6> v(πi+1). As d(π, π(s,π′(s))) = 1,
this concludes the proof.

Theorem 3.2. Algorithm 1 correctly computes PPareto.
The correctness of the algorithm follows from Lemma 3.1. In detail, Algo-

rithm 1 stores a set P of policies. In the i-th step, the set P is updated with
policies that have distance 1 from already computed policies in P and distance i
from π0; a further constraint restricts the policies to be non-dominated by their
“parent” in P . This way, after i steps P contains all policies with distance i
from π0 that follow a non-dominated path. By computing the non-dominated
subset of currently found policies in line 6, we maintain a set of mutually non-
dominated policies that are reachable on a non-dominated path from π0. By
Lemma 3.1., this captures all policies from PPareto.
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