Online Companion for "Multi-Objective Approaches to Markov Decision Processes with Uncertain Transition Parameters"

Dimitri Scheftelowitsch, Peter Buchholz, Vahid Hashemi, Holger Hermanns

October 18, 2017

Lemma 3.1. Let $\mathcal{P} = (S, A, T_{\uparrow}, R_{\uparrow}, Pr)$ be a SBMDP. Let furthermore π, π' be two policies where π' lies on the Pareto frontier. Then there exists a finite sequence of policies $\pi = \pi_0, \pi_1, \ldots, \pi_N = \pi'$ where $d(\pi_i, \pi_{i+1}) = 1, \mathbf{v}^{(\pi_i)} \neq \mathbf{v}^{(\pi_{i+1})}$ and, additionally, $N \leq |S|$.

Proof. We provide a proof by induction on $d(\pi, \pi')$. For $d(\pi, \pi') \in \{0, 1\}$, the statement holds obviously.

For $d(\pi, \pi') = c > 1$, the induction hypothesis is that the statement holds for c-1. This means that for each policy π_1 with distance $d(\pi_1, \pi') = c-1$ there exists a sequence of policies $\pi_1, \pi_2, \ldots, \pi_c = \pi'$ such that for any two adjacent policies π_i, π_{i+1} it is $\mathbf{v}^{(\pi_i)} \neq \mathbf{v}^{(\pi_{i+1})}$.

To show the induction step, we must infer the statement for $d(\pi, \pi') = c$. Suppose now for the sake of contradiction that it is not the case. We observe that under this assumption, for each state $s \in S$, the policy $\pi^{(s,\pi'(s))}$ that results from changing π in state s to choose action $\pi'(s)$ results in a value vector that is dominated by $\mathbf{v}^{(\pi)}$, i. e., $\mathbf{v}^{(\pi)} > \mathbf{v}^{(\pi^{(s,\pi'(s))})}$. Let us now consider a restricted SBMDP $\mathcal{P}^{[\pi,\pi']} = (S, A^{[\pi,\pi']}, T^{[\pi,\pi']}_{\downarrow}, R^{[\pi,\pi']}_{\downarrow})$ where the available actions are only those used in either π or π' , that is, $A^{[\pi,\pi']} = \{a,b\}$ and the matrices P in $T^{[\pi,\pi']}_{\downarrow}$ are constructed with $p^{[\pi,\pi']a}_{s,s'} = p^{\pi(s)}_{s,s'}$ and $p^{[\pi,\pi']b}_{s,s'} = p^{\pi'(s)}_{s,s'}$. The reward function is defined analogously by $R^{[\pi,\pi']}_{\downarrow} = \left((\mathbf{r}^{[\pi,\pi']a}_{\downarrow}, \mathbf{r}^{[\pi,\pi']a}_{\uparrow}), (\mathbf{r}^{[\pi,\pi']b}_{\downarrow}, \mathbf{r}^{[\pi,\pi']b}_{\uparrow}) \right)$ with

$$\begin{split} \mathbf{r}_{\downarrow s}^{[\pi,\pi']a} &= \mathbf{r}_{\downarrow s}^{\pi(s)}, \mathbf{r}_{\uparrow s}^{[\pi,\pi']a} = \mathbf{r}_{\uparrow s}^{\pi(s)} \\ \mathbf{r}_{\downarrow s}^{[\pi,\pi']b} &= \mathbf{r}_{\downarrow s}^{\pi'(s)}, \mathbf{r}_{\uparrow s}^{[\pi,\pi']b} = \mathbf{r}_{\uparrow s}^{\pi'(s)}. \end{split}$$

It is easy to see that the policies π and π' can be executed in the new SBMDP $\mathcal{P}^{[\pi,\pi']}$. As all action changes from π lead to smaller value vectors in each component, we can see that π is locally optimal for each component, and thus, π is optimal for all components. Hence, π is an optimal policy in $\mathcal{P}^{[\pi,\pi']}$. Furthermore, π' is then dominated by π in all states and all components in $\mathcal{P}^{[\pi,\pi']}$ as well as in \mathcal{P} . Consequently, π' cannot lie on the Pareto frontier, which contradicts the initial assumption.

As we have arrived at a contradiction, we conclude that there must exist a state s where it is $\mathbf{v}^{(\pi)} \neq \mathbf{v}^{(\pi^{(s,\pi'(s))})}$, and, since $d(\pi^{(s,\pi'(s))},\pi') = c-1$ and $d(\cdot,\cdot)$

can never exceed |S|, there exists, by induction hypothesis, a sequence of policies $\pi^{(s,\pi'(s))} = \pi_1, \pi_2, \ldots, \pi_c = \pi'$ for which $\mathbf{v}^{(\pi_i)} \not\geq \mathbf{v}^{(\pi_{i+1})}$. As $d(\pi, \pi^{(s,\pi'(s))}) = 1$, this concludes the proof.

Theorem 3.2. Algorithm 1 correctly computes \mathcal{P}_{Pareto} .

The correctness of the algorithm follows from Lemma 3.1. In detail, Algorithm 1 stores a set P of policies. In the *i*-th step, the set P is updated with policies that have distance 1 from already computed policies in P and distance *i* from π_0 ; a further constraint restricts the policies to be non-dominated by their "parent" in P. This way, after *i* steps P contains all policies with distance *i* from π_0 that follow a non-dominated path. By computing the non-dominated subset of currently found policies in line 6, we maintain a set of mutually nondominated policies that are reachable on a non-dominated path from π_0 . By Lemma 3.1., this captures all policies from $\mathcal{P}_{\text{Pareto}}$.