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Lemma 3.1. Let P = (S, A, Ty, Ry, Pr) be a SBMDP. Let furthermore , 7/
be two policies where 7’ lies on the Pareto frontier. Then there exists a finite
sequence of policies 7 = mg,71,..., 7y = 7’ where d(m;, mi1q1) = 1,v{T) %
v(Ti+1) and, additionally, N < |S|.

Proof. We provide a proof by induction on d(m, 7’). For d(m,7’) € {0,1}, the
statement holds obviously.

For d(m,n") = ¢ > 1, the induction hypothesis is that the statement holds for
¢ — 1. This means that for each policy m; with distance d(m,7’) = ¢ — 1 there
exists a sequence of policies 71, g, ..., T, = 7 such that for any two adjacent
policies 7, w41 it is v(mi) p3 v(mitn)

To show the induction step, we must infer the statement for d(m, 7') = c.
Suppose now for the sake of contradiction that it is not the case. We observe
that under this assumption, for each state s € S, the policy 7(57 () that results
from changing 7 in state s to choose action 7’(s) results in a value vector that

is dominated by v(™_ i.e., v(™) > v ) et us now consider a restricted

SBMDP Plmm'l = (5, Alm7'], Ti[ﬂ’ﬂ , R[W’”/]) where the available actions are only

0
those used in either 7 or 7/, that is, A"™'] = {a, b} and the matrices P in Tg’ﬂ }
are constructed with p[;)r;r’]a = p:,(:,) and p[;’fr/]b = p:S(,S ). The reward function
is defined analogously by R[g’”/] = ((r[f’”/]“, r[{“”/]a), (r[f”r/]b, r[g“”/]b)) with
[mn'la _ w(s) [ma'la _  w(s)
r,Ls - r,l,s 7rTs - rTs
[m’lb 7' (s) _[ma'lb _ _7(s)
v =l e T =Y

It is easy to see that the policies m and 7’ can be executed in the new
SBMDP P[™7l As all action changes from 7 lead to smaller value vectors in
each component, we can see that 7 is locally optimal for each component, and
thus, 7 is optimal for all components. Hence, 7 is an optimal policy in plmr’],
Furthermore, 7’ is then dominated by 7 in all states and all components in
Pl as well as in P. Consequently, 7’ cannot lie on the Pareto frontier, which
contradicts the initial assumption.

As we have arrived at a contradiction, we conclude that there must exist a

I(S))), and, since d(7(™ ) 7/) = ¢—1 and d(-, -)

(s,

state s where it is v(7) % v(7



can never exceed |S|, there exists, by induction hypothesis, a sequence of policies
7™ ) = 1y, ..., me = ' for which v(™) % v(Ti+1)  Ag d(m, w57 () = 1,
this concludes the proof.

Theorem 3.2. Algorithm 1 correctly computes Ppareto-

The correctness of the algorithm follows from Lemma 3.1. In detail, Algo-
rithm 1 stores a set P of policies. In the i-th step, the set P is updated with
policies that have distance 1 from already computed policies in P and distance ¢
from m; a further constraint restricts the policies to be non-dominated by their
“parent” in P. This way, after i steps P contains all policies with distance 4
from my that follow a non-dominated path. By computing the non-dominated
subset of currently found policies in line 6, we maintain a set of mutually non-
dominated policies that are reachable on a non-dominated path from my. By
Lemma 3.1., this captures all policies from Ppareto-



