Online Companion for "Multi-Objective Approaches to Markov Decision Processes with Uncertain Transition Parameters"

Dimitri Scheftelowitsch, Peter Buchholz, Vahid Hashemi, Holger Hermanns

October 18, 2017

Lemma 3.1. Let $\mathcal{P}=\left(S, A, T_{\uparrow}, R_{\uparrow}, P r\right)$ be a SBMDP. Let furthermore π, π^{\prime} be two policies where π^{\prime} lies on the Pareto frontier. Then there exists a finite sequence of policies $\pi=\pi_{0}, \pi_{1}, \ldots, \pi_{N}=\pi^{\prime}$ where $d\left(\pi_{i}, \pi_{i+1}\right)=1, \mathbf{v}^{\left(\pi_{i}\right)} \ngtr$ $\mathbf{v}^{\left(\pi_{i+1}\right)}$ and, additionally, $N \leq|S|$.

Proof. We provide a proof by induction on $d\left(\pi, \pi^{\prime}\right)$. For $d\left(\pi, \pi^{\prime}\right) \in\{0,1\}$, the statement holds obviously.

For $d\left(\pi, \pi^{\prime}\right)=c>1$, the induction hypothesis is that the statement holds for $c-1$. This means that for each policy π_{1} with distance $d\left(\pi_{1}, \pi^{\prime}\right)=c-1$ there exists a sequence of policies $\pi_{1}, \pi_{2}, \ldots, \pi_{c}=\pi^{\prime}$ such that for any two adjacent policies π_{i}, π_{i+1} it is $\mathbf{v}^{\left(\pi_{i}\right)} \ngtr \mathbf{v}^{\left(\pi_{i+1}\right)}$.

To show the induction step, we must infer the statement for $d\left(\pi, \pi^{\prime}\right)=c$. Suppose now for the sake of contradiction that it is not the case. We observe that under this assumption, for each state $s \in S$, the policy $\pi^{\left(s, \pi^{\prime}(s)\right)}$ that results from changing π in state s to choose action $\pi^{\prime}(s)$ results in a value vector that is dominated by $\mathbf{v}^{(\pi)}$, i.e., $\mathbf{v}^{(\pi)}>\mathbf{v}^{\left(\pi^{\left(s, \pi^{\prime}(s)\right)}\right)}$. Let us now consider a restricted SBMDP $\mathcal{P}^{\left[\pi, \pi^{\prime}\right]}=\left(S, A^{\left[\pi, \pi^{\prime}\right]}, T_{\downarrow}^{\left[\pi, \pi^{\prime}\right]}, R_{\downarrow}^{\left[\pi, \pi^{\prime}\right]}\right)$ where the available actions are only those used in either π or π^{\prime}, that is, $A^{\left[\pi, \pi^{\prime}\right]}=\{a, b\}$ and the matrices P in $T_{\uparrow}^{\left[\pi, \pi^{\prime}\right]}$ are constructed with $p_{s, s^{\prime}}^{\left[\pi, \pi^{\prime}\right] a}=p_{s, s^{\prime}}^{\pi(s)}$ and $p_{s, s^{\prime}}^{\left[\pi, \pi^{\prime}\right] b}=p_{s, s^{\prime}}^{\pi^{\prime}(s)}$. The reward function is defined analogously by $R_{\downarrow}^{\left[\pi, \pi^{\prime}\right]}=\left(\left(\mathbf{r}_{\downarrow}^{\left[\pi, \pi^{\prime}\right] a}, \mathbf{r}_{\uparrow}^{\left[\pi, \pi^{\prime}\right] a}\right),\left(\mathbf{r}_{\downarrow}^{\left[\pi, \pi^{\prime}\right] b}, \mathbf{r}_{\uparrow}^{\left[\pi, \pi^{\prime}\right] b}\right)\right)$ with

$$
\begin{aligned}
\mathbf{r}_{\downarrow s}^{\left[\pi, \pi^{\prime}\right] a} & =\mathbf{r}_{\downarrow s}^{\pi(s)}, \mathbf{r}_{\uparrow s}^{\left[\pi, \pi^{\prime}\right] a}=\mathbf{r}_{\uparrow s}^{\pi(s)} \\
\mathbf{r}_{\downarrow s}^{\left[\pi, \pi^{\prime}\right] b} & =\mathbf{r}_{\downarrow s}^{\pi^{\prime}(s)}, \mathbf{r}_{\uparrow s}^{\left[\pi, \pi^{\prime}\right] b}=\mathbf{r}_{\uparrow s}^{\pi^{\prime}(s)} .
\end{aligned}
$$

It is easy to see that the policies π and π^{\prime} can be executed in the new SBMDP $\mathcal{P}^{\left[\pi, \pi^{\prime}\right]}$. As all action changes from π lead to smaller value vectors in each component, we can see that π is locally optimal for each component, and thus, π is optimal for all components. Hence, π is an optimal policy in $\mathcal{P}^{\left[\pi, \pi^{\prime}\right]}$. Furthermore, π^{\prime} is then dominated by π in all states and all components in $\mathcal{P}^{\left[\pi, \pi^{\prime}\right]}$ as well as in \mathcal{P}. Consequently, π^{\prime} cannot lie on the Pareto frontier, which contradicts the initial assumption.

As we have arrived at a contradiction, we conclude that there must exist a state s where it is $\mathbf{v}^{(\pi)} \ngtr \mathbf{v}^{\left(\pi^{\left(s, \pi^{\prime}(s)\right)}\right)}$, and, since $d\left(\pi^{\left(s, \pi^{\prime}(s)\right)}, \pi^{\prime}\right)=c-1$ and $d(\cdot, \cdot)$
can never exceed $|S|$, there exists, by induction hypothesis, a sequence of policies $\pi^{\left(s, \pi^{\prime}(s)\right)}=\pi_{1}, \pi_{2}, \ldots, \pi_{c}=\pi^{\prime}$ for which $\mathbf{v}^{\left(\pi_{i}\right)} \ngtr \mathbf{v}^{\left(\pi_{i+1}\right)}$. As $d\left(\pi, \pi^{\left(s, \pi^{\prime}(s)\right)}\right)=1$, this concludes the proof.

Theorem 3.2. Algorithm 1 correctly computes $\mathcal{P}_{\text {Pareto }}$.
The correctness of the algorithm follows from Lemma 3.1. In detail, Algorithm 1 stores a set P of policies. In the i-th step, the set P is updated with policies that have distance 1 from already computed policies in P and distance i from π_{0}; a further constraint restricts the policies to be non-dominated by their "parent" in P. This way, after i steps P contains all policies with distance i from π_{0} that follow a non-dominated path. By computing the non-dominated subset of currently found policies in line 6 , we maintain a set of mutually nondominated policies that are reachable on a non-dominated path from π_{0}. By Lemma 3.1., this captures all policies from $\mathcal{P}_{\text {Pareto }}$.

