
Generic Platform for

Advanced E-Health Applications

Elmar Zeeb∗, Guido Moritz∗, Wolfgang Thronicke†, Myriam Lipprandt‡, Andreas Hein‡ Frerk Müller‡, Jan Krüger§,

Oliver Dohndorf§, Anna Litvina¶, Christoph Fiehe¶, Ingo Lück¶, Frank Golatowski∗ and Dirk Timmermann∗

∗Institute of Applied Microelectronics and Computer Engineering

University of Rostock, 18057 Rostock, Germany

{elmar.zeeb, guido.moritz, frank.golatowski, dirk.timmermann}@uni-rostock.de
†Siemens AG, SIS C-LAB, Fürstenallee 11, 33102 Paderborn, Germany

wolfgang.thronicke@siemens.com
‡OFFIS Institute for Information Technology, Oldenburg, Germany

{myriam.lipprandt, frerk.mueller, andreas.hein}@offis.de
§TU Dortmund University, 44221 Dortmund, Germany

{jan.krueger, oliver.dohndorf}@tu-dortmund.de
¶MATERNA Information & Communications, 44141 Dortmund, Germany

{anna.litvina, christoph.fiehe, ingo.lueck}@materna.de

Abstract— The demographic change and the cost pressure
in the healthcare sector drive the need for efficient and secure
medical homecare solutions which apply for the people who are
elderly or in anastasis. As the complexity of such systems is rising,
there is a need of a common foundation of components which
can be reused to lower the implementation effort of such systems.
The European ITEA2 OSAmI research project targets such a
common foundation of basic components for a basic, widely
applicable service-oriented component platform. The German
OSAmI-D subproject develops a construction kit based on the
OSAmI component platform with a particular focus on services
for medical and E-Health applications. The results of the ongoing
project and especially the foundation of reusable components are
demonstrated in the scenario of home-based ergometer training
during the rehabilitation of patients with cardiologic illnesses.

I. INTRODUCTION

The complexity of flexible, efficient and secure medical

homecare solutions requires services, platforms and basic

components that can be reused in several systems and thus

lower the implementation effort. Efficient design of IT-based

solutions depends on a rich selection of reusable components

and services. Especially in medical scenarios with very high

security and safety requirements, a collection of approved

components for a reliable software platform is a key enabler

of reduced time-to-market cycles.

The European ITEA2 OSAmI research project targets a

common foundation of basic components for a basic, widely

applicable service-oriented component platform. The OSAmI

project involves partners from several European countries.

The German subproject OSAmI-D develops a construction

kit with a particular focus on medical and E-Health appli-

cations. The results of the ongoing OSAmI-D subproject are

demonstrated in the scenario of home-based ergometer training

during the rehabilitation of patients with cardiologic illnesses.

An overview of the OSAmI-D scenario and the resulting

OSAmI-D application is given in [1].

The OSAmI platform is composed of cross-domain ’hori-

zontal’ and domain-specific ’vertical’ services, provided from

various project partners, mostly under an open source licence.

Section II describes the specific requirements of the medical

training scenario and thus for the basic components. Then

the OSAmI basic platform and its component is described

from section III to VIII. This is not the full description of

all components of the OSAmI-D application but a set of basic

components that are candidates for the OSAmI component

foundation. Finally a conclusion is given in section IX.

II. REQUIREMENTS ON COMMUNICATION BETWEEN

DIFFERENT USERS OF THE PLATFORM

A. User in a E-Health Application

The stakeholder of a generic platform for E-Health ap-

plications are on the one hand IT-professionals, developing

new applications by composing the developed vertical and

horizontal basic components to fulfill the needs of reusable and

stable components for a generic platform. On the other hand,

this platform is used by health professionals who employ this

for professional purpose and patients who are the beneficiary

group of persons who had an illness or are elderly. These

divers stakeholders and their relation to each other cause

special requirements on communication and interaction in this

generic platform. A physician has the role of a professional

who is in charge and has the responsibility for the accurate

setting of health related function. The patient relies on the

physicians’ experience and gives aware feedback through

communication. Activities like exercise or daily behavior

can also be a part of the interaction between patient and

physician. Through changes in behavior or changes of vital

signs, a patient gives important health related information. The

application scenario and the described functional application



requirements raise further conceptual and technical require-

ments as explained in the remainder of this section.

B. Requirements on Communication and Interaction

The ability to communicate between patient and physician is

a basic requirement. Many ways of interaction and communi-

cation between the two users can be distinguished. This can be

a real-time communication (audio and/or video) between two

users, a uni-directional message with operation instructions

triggered by the physician in, e.g., taking medication. Also a

uni-directional communication from the patient to a physician

can be established in case of an emergency situation [2].

Furthermore, a uni-directional interaction can be build through

health related documents and plans with behavioral rules like,

e.g., a training plan or a diet plan. Generally, a generic

platform for E-Health application must fulfill a mechanism

to collect different kind of data from a patient. This can be a

sensor based data from mobile devices like ECG. To achieve

this requirements the generic platform must collect health

related data from a patient to send them to the physician.

C. Medical Documents

To fulfill the needs of interaction between physician and

patient the challenge of interoperability must be addressed.

Interoperability is from prime importance because various

types of vital signs and other health related data need to be

gathered and interpreted across applications, e.g., in a clinic

or ambulant [1]. On the physician side, the data must be

human-readable, processable, ensure authenticity and should

be saved for years due to legal restriction. General purpose

formats such as Portable Document Format (PDF) supports

content that is only available to a human reader and further

data processing is not possible. Therefore medical documents

should be able to contain structured information and data like

ECG recordings. Standardised medical document formats like

DICOM Structured Reporting [3] or the HL7 CDA [4] are

possible solutions. The CDA format seems to be partially

applicable. It is possible to store patient based health related

data in XML and additionally three levels of semantical

encoded content can be choosen. On level one the content

is just human-readable and futher processing is not possible.

On level two the sections with text can be enriched with a

code system like LOINC or SNOMED. In level three every

textual entry like systolic blood pressure can be semantically

derived via code systems. Especially CDA on level three

makes data processing possible. The disadvantage on CDA ist

the overhead given by XML. Documents with many vital signs

can have over 100 MB that makes a transmission complicate

and handling with a webbrowser for readability impossible.

III. BASIC INTEGRATION PLATFORM

In the project OSAmI, the OSGi Framework serves as the

basis for software developments. OSGi is specified by the

OSGi Alliance as an open, modular, and scalable service

delivery platform [5], which runs in a Java Virtual Machine,

and offers an intra-JVM service-oriented architecture (SOA).

OSGi provides a standardized way of managing the lifecycle

of software components, the so-called bundles, running in an

OSGi platform. Bundles can be installed, started, updated,

stopped and uninstalled at the platform’s runtime, without the

need to restart the entire system. They offer their functionality

in the form of services to other bundles by means of a publish-

find-bind mechanism. Therefor, a service registry is used in

which services are registered and can be found by potential

service consumers. Furthermore, the OSGi framework sup-

ports the eventing concept, allowing to receive events from

other services or the framework itself.

Originally, OSGi was developed to serve as a local SOA,

thus being restricted to the boundaries of a single JVM,

not intending interaction of different OSGi platforms. Hence,

WS4D-DOI [6] was developed, which integrates transparently

OSGi and DPWS [7] and vice versa, thus allowing the

use of OSGi services located in a different OSGi platform

according to the paradigm of Distributed Object Systems [8].

Furthermore, it integrates native DPWS services transparently

into an OSGi platform, allowing the use of those out of bundles

running in that platform. So OSGi’s capability of software

lifecycle management, combined with WS4D-DOI’s capability

to enable the interaction of different OSGi platforms and the

integration of native DPWS services forms an ideal basis

for the development of applications in the E-Health domain

which require distributed software solutions as well as the

integration of medical hardware, e.g., sensors for pulse or ECG

measuring.

IV. PATIENT MONITORING

The patient monitoring is not implemented as component

but as the actual OSAmI-D application on top of the OSAmI

component platform. It uses and instruments several basic

and several application specific components to implement the

training scenario as described in [1]. Some but not all basic

components used by this application are described in this

paper.

V. DEVICE INTEGRATION

A flexible and modern device integration is essential for

the success of an E-Health system. Such systems do not have

to only integrate medical devices but also a wide range of

devices from other application domains like home automation,

consumer electronics, etc. Thus E-Health systems have to cope

with the complexity coming from the device integration. This

complexity results from the increasing number of standards

and products that are described briefly in the following para-

graph.

A. Technology Jungle

Beside several proprietary solutions or solutions by huge

industry consortia, IP based device technologies and infras-

tructures have been developed.

Main scope of the IEEE 802.15 WPAN Task Group 4, which

has brought forth the IEEE 802.15.4 specifications, is low

power, low cost, and low data rate wireless communication.



Based on 802.15.4 on link layer, the ZigBee Alliance has

developed further network and application layer protocols. The

application layer protocols are organized in clusters, which can

be combined to build a complete application profile.

In turn and in addition to the existing classic Bluetooth

specifications, the emerging Bluetooth Low Energy (BTLE)

technology was developed. Low energy link layer are defined,

working under the existing L2CAP layer. This allows applica-

tion of dual mode architecture, consisting of parallel running

standard Bluetooth and BTLE stacks in one circuit. BTLE re-

vised drawbacks of classic Bluetooth like piconet architecture

and thus limited subnet size. Additionally, a broadcast mode

is described, which leads to new application scenarios because

of the absence of required direct pairing. In contrast to classic

Bluetooth application protocols and profiles, BTLE is capable

of the lightweight attribute protocol and attribute profiles.

Both ZigBee and Bluetooth Low Energy are chosen by

Continua Health Alliance to provide wireless connectivity.

Nevertheless, neither ZigBee nor Bluetooth Low Energy is

able to communicate directly with higher valued services in

other networks without intermediate devices. They require

application layer gateways to map payload data in IP based

network protocols. Other existing and emerging technologies

and architectures are developed and extended to be applied in

networking device infrastructures without need for application

layer gateways. In accordance to the IPv6 specification, IETF

has established the 6LoWPAN working group. The focus of

6LoWPAN is to compress IPv6 headers to be sent on top of

802.15.4-based technologies. 6LoWPAN establishes the basis

for TCP and UDP data transmissions in Wireless Sensor

Networks.

This brief overview is not complete and many standards are

missing like DASH7, ISA100.11a, EnOcean, ANT, Z-WAVE,

and Wi-Fi Direct, to name few only. Every standard has its

dedicated application scenario and niche. In conclusion, there

is a need for a basic component that eases the integration

of devices in applications in a technology independent and

manufacturer independent way.

B. OSAmI Device Integration

The OSAmI Device Integration is the central component in

the OSAmI platform to cope with the large number of stan-

dards and devices in modern E-Health systems. As the OSAmI

platform bases on OSGi the OSAmI Device integration tries

to fit into the OSGi framework as close as possible. OSGi

itself provides a mechanism that addresses device integration.

This mechanism called OSGi Device Access is specified in

the OSGi compendium specification [9] and thus an optional

component in OSGi frameworks. OSGi Device Access solves

the problem of automatic matching and loading of drivers

at runtime for hotplugging technologies like USB. Figure 1

describes the sequence that is triggered by plugging in a

new device to the OSGi platform with implemented Device

Access mechanism. The OSGi Device Access mechanism can

be compared to traditional dynamic device driver registries

as present in operating systems like Windows, Mac OSX

OSGi Device

Access

1
Base Driver registers

new device as

OSGI Device Service

2
Device Manager

sees new

OSGI Device Service

3
Device Manager

searches for matching

Driver

4
Device Manager

installs

Driver

OSAmI Device

Integration

1
Composite Function Driver

registers functionality of the

device as OSGI Service

2
Application

consumes the functionality

of the device

Fig. 1. Sequences in OSGi Device Access and OSAmI Device Integration

or Linux. But from the perspective of the OSAmI project,

this mechanism does not decouple applications from device

communication technologies and standards. As this is a main

requirement for the OSAmI Platform there is a need for a

more abstract device access mechanism.

This was a brief description why the mechanism provided

by OSGi does not meet requirements of the OSAmI project

and why there was a need for the OSAmI Device Integration

component. The OSAmI Device Integration does not replace

the OSGi Device Access but extends it.

OSGi Device Access defines several abstraction levels of

device access and how this is represented in drivers. The

specification defines low level device access to address low

level features, high level device access to address protocol

stacks and all levels in between. A typical networked device

that is UPnP or DPWS capable could be accessed with

several drivers on different levels like Ethernet, IP, HTTP,

or the Application level protocol. There further device access

levels are defined to address multifunction devices or gateway

devices.

The OSAmI Device Integration basically defines a new level

of device access inside the OSGi Device Access. The aim is to

decouple applications from underlying device communication

technologies, by applying principles derived from service-

oriented architectures (SOA). These principles include loose

coupling to the device access that can be achieved by using

technology independent interfaces to access drivers. In general

the OSAmI application does not care if the device is reachable

by Bluetooth or wireless lan. The application wants to use

the functionality of the device. This can be easily realized

with the OSGi service mechanism. For example, applications

need ECG functionality and use the ECG interface to access

any device providing this functionality. Depending on the

underlying technology, the interface can be provided by the

driver or mapped to the service concept of the particular device

communication technology.

At the moment the OSAmI Device Integration specification

is implemented inside OSAmI project and consists of three

main parts: Extensions to the OSGi Device Access specifica-

tion, function level device access and design guides to design



Device

Service

Composite

Function

Driver

Application

Interface

1

Interface

2

Device

Manager

assign
p
ro
v
id
e

consume

Function

Level

Device

Access

Fig. 2. Overview of function level device access

technology independent interfaces for function level device

access.

The extensions to the OSGi Device Access consist of APIs

to connect and discover devices. On the one hand there are

technologies like RS-232 where the device integration must be

triggered by applications as there is no way to detect devices.

On the other hand there are modern technologies like UPnP,

DPWS or USB that allows the enumeration or discovery of

devices. In this case the device integration can be triggered by

the application or device an

The second part of the OSAmI Device Integration defines

the technology independent device access from the perspective

of applications called function level device access (see figure

2). Therefor each function group of a device is represented

as separate service in terms of SOA. Each of the service

is represented as regular OSGi Service inside the OSAmI

platform. If OSGi services represent similar functionality on

devices, using different communication technologies, applica-

tions can use the same function on different devices. Thus the

access to this function is independent of the underlying device

communication technology.

This approach has two main advantages. The first advantage

is the increased flexibility. Implementations of services and

thus the devices can be exchanged without affecting the

application. Therefore, application logic does not have to

be adapted to new device communication technologies. The

second main advantage is the seamless integration of modern

device communication technologies that implement service

oriented concepts. These technologies such as DPWS or UPnP

can be integrated into the function level device access with a

generic driver. This driver can integrate the functionality of the

devices in a generic way without specific knowledge about the

actual devices. Device communication technologies without

service orientation require drivers that map the functionality

of devices as services into the platform.

The third part of the OSAmI Device Integration consists

of guidelines how to defines interfaces for the function level

device access. As already mentioned before the function

level device access bases on OSGi Services. OSGi Services

are described with Java interfaces. The problem with Java

interfaces is that they are very rich of features and not all

features can be mapped to device communication technologies.

So the OSAmI Device Integration specification defines a set

of features common for device access. This includes simple,

complex and custom data types, methods, exceptions, events,

binary attachments, and data streams. This set of features

was inspired by technologies like UPnP, DPWS and Jini.

But this features can still be used with technologies like

RS-232 or Bluetooth. In this case the missing features must

be implemented in drivers. Of course a driver for a specific

device only has to implement the features of the corresponding

interfaces. So the OSAmI Device Integration addresses both

technologies that offer service-oriented concepts themselves

and technologies without such concepts. From the perspective

of OSAmI applications, services on devices should only be

represented by JAVA interfaces. The device driver has to

implement these interfaces and communicate with the physical

device.

VI. MANAGEMENT OF E-HEALTH SYSTEMS

Nowadays systems in the healthcare domain become quite

complex and increasingly contain devices with limited re-

sources. Furthermore they also have to adapt to the chang-

ing conditions and requirements, e.g., altering medical needs

attributable to changing health state of a patient. Accord-

ingly, a comprising and lightweighted management system

is mandatory to provide those adaptions in a fast, but also

predictable and reliable manner. This section introduces the

management system, applied to the OSAmI software platform,

on the basis of an exemplary application scenario from the

healthcare domain.

The scenario demonstrates a cardiac patient who completed

an ambulant rehabilitation program. He is supplied with the

necessary equipment: an ergometer, an ECG, some sensors for

pulse rate measurement and a so-called home gateway. The

home gateway serves as an execution platform for software

components to control the training and also connects the home

equipment to the hospital servers, e.g., to perform a video

conference for a live consultation.

Besides functional requirements from the medical domain,

the scenario also involves several non-functional requirements.

These are used to assure predefined quality criteria of the

system, like costs, reliability or security. For instance, the

sensible patient’s personal data are handled, and therefore,

protection objectives like confidentiality and integrity must be

met. The management system ensures that both functional and

non-functional requirements are taken into account. To provide

this and to guarantee the requested lightweighted management,

the concept of the model-based-management, as developed

in [10], was adopted. This concept combines management

policies and policy hierarchies [11] with a layered system

model. The management policies build an additional control

level above the actual programming code to ”govern the



������ ��	
��

���
�����
�

�������

����
���
�

����
��

����������
�

���
���

�
�
�
��
��
��
	
�

�

�
�
��
��
	
�

Fig. 3. Model Layers and Policy Refinement

choices in behaviour of a system” [12], thus performing

adaption, correction and configuration functions.

The model-based management used is divided into two

phases: the design phase and the runtime phase. In the design

phase, the system to be managed is modeled on three layers

with decreasing degree of abstraction. On the most abstract

top layer, named ”Use Cases & Aspects”, technical details are

backgrounded. Instead, existing use cases with their aspects

relating to non-functional requirements and quality criteria of

the system are modeled. On the middle layer, named ”Services

& Domains”, the system is represented from a service-oriented

point of view. This involves services, clients and dependency

relations, assigned to so-called domains. On the lowest layer,

named ”Components & Devices”, actual software components

and devices existing at runtime are represented. A self-

contained and independent model exists at each layer, whereas

each model represents the complete system. Corresponding

elements of adjacent models are associated using refinement

relations. In order to be manageable, each component must

declare a set of management variables: status variables to

describe the management-relevant state of the component, and

configuration variables to effect the behavior of a component.

Furthermore, on each layer the policies applying to the model

elements are attached. According to the approach of policy

hierarchies, policies are also arranged in different degrees

of abstraction. In the design phase, only abstract high-level

policies on the upper levels are defined manually. Technical

low-level policies are refined automatically based on the

abstract policies, and the relations between the corresponding

elements. For this refinement as well as for modeling the sys-

tem, the tool MoBaSec (Model Based Service Configuration)

(cf. [10]), developed in cooperation between TU Dortmund

University and MATERNA, is used. The relation between the

model layers and the refinement of declarative high-level into

imperative low-level policies is depicted in Figure 3.

In the runtime phase, the management is realized by so-

called Component Managers, implemented as OSGi bundles.

A component manager provides some management services:

a configuration service offering access to the management

variables, a policy service providing policy-based decisions

with respect to the overall system state, and a binding service

allowing to establish and release interaction relationships

(so called bindings) to other components. Each component

is assigned to exactly one component manager, whereas a

component manager might be responsible for more than one

component. The allocation of the components to their manager

as well as the assignment of the derived low-level policies,

which are the only policies present in the runtime management

system, is also planned in the design phase using MoBaSeC. In

detail, low-level policies are distributed in form of efficiently

executable Java byte code, and it can be distinguished between

four policy types. Policy Expressions and Policy Decisions

are terms defined on management variables, operations and

constants, and are evaluated on demand of a component.

A policy expression may have any return value, whereas a

policy decision is restricted to return boolean value. Another

type is the so-called Policy Rule, which represents an event-

condition-action rule specifying actions to be performed when

a certain event occurs, e.g., as a reaction on the change of some

status variables. Finally, Binding Requirements are used to

define non-functional requirements to be respected whenever

a binding between two components should be established.

Figure 4 shows an excerpt of the healthcare scenario as

modeled in the design phase. The left column shows the

modeled system in the three layers of abstraction, the policies

are depicted in the right column. According to the scenario,

Ergometer Training as the main use case is modeled on the

top ”Use Cases & Aspects” layer. It is conducted according to

the asset Training Plan, involves the actor Cardiac Patient, and

makes for example use of the function Ergometer Controlling.

Non-functional requirements for the self-contained model on

this layer include aspects of Availability and Security, e.g.,

high integrity and high confidentiality. On the following ”Ser-

vices & Domains” layer, all services and client applications,

that are necessary to provide the required functions of the

layer above, are modeled. For instance, the training controlling

function is provided by a Training Control Application, which

itself needs a Pulse Rate Analysis Service and a Ergometer

Control Service to govern the training. To fulfill security

requirements regarding confidentiality the Authentication Ser-

vice is essential as well. In this context, the abstract security

aspects of the top layer have been refined to several Security

Service Level Objectives, e.g., the provision to use creden-

tials, or to use AES with a key of 256 bit for encryption.

Furthermore, the management-specific services for performing

Binding, Configuration, and Policy operations are represented

at this model layer. Finally, the bottom layer ”Components &

Devices” contains all actual software components, resources,

and devices existing at runtime. For instance, the Ergometer

Bundle software component providing the ergometer control

service is modeled here, as well as the Ergometer Device. Be-

cause the Home Gateway Device serves as execution platform

for the software components, all of these are set in relation,

as well as all devices which are physically connected to the

home gateway, e.g., the ergometer. Moreover, the service level

objectives of the layer above have been refined to appropriate



������������	��


����������
����������


���������

��	
�
��

���������

������


��

�����
��

��	
�
��

�
	�

�����

�	��
	�

�	�
���

�����

��	
�
��

������


��

�����
��

��
����	��

��	
��
�

�����
��

��
����	��

��	��������

�����
��

��	
�
��

������


���

�	�
��

����������

������


����
��

�������
�

�	�
��

����
��

��	
�
��

����
���	�
��

�	�	

��
����	��

��	
��
�

����
��

�� ��!

��"�

��#$���

��
��

��	��������

����
����

��
��

��	��������

����
���%

������

������


%���
�

���������

%���
�

��
����	��

��	
��
�

%���
�

��&

%���
��� ��!

��"�

�������
	


���

�	�
��

%���
�

���������

���
��

��&

���
��

'����

&	��(	�

���
��

������
�

)	�
��

����
��

��

��

��
�

����
���

�	�
��

%
��
��

��

��

*����	����+

�������

����
����+�

���	
��

�����������+�

���
���

������ ��	
��

��������	��������	������

���	�������������

���������

�	�	���

%���
�

����
���	�
��

����
��

��

��

����
��
%
��
��

����
��

������	����

�����������	�
�����

���������	
����
����

���
�	


����
���,���
�

-#$���
��

���
�	


������

��	

	#


��

����
���,���


-#$���
��

��	

	#


��

������

�����
��

������

�����
��

����
���,���


-#$���
��

��

��

�.�����
��

����������� !"�#$�%�&'&
���$�(�%�&�$�&

���$�(!�$��%�&)'*&

$��	
������������$�

)'*�+�����
�������

#(��,�"�-��%�&*..&

#(��,�"�-�!�-��$�%�&/..&

��������0����+����


������	����

������������������

�	���������������

����	�������	������/.����

����	�������	����������/..1����

��������	
����
����
��


��	�������	�����

���������0����


������	���

�
�2�����3�##$"4�%%�&���&5�

�������3��(#�6$�%�&�	��&

#(����#�$�#!�"�7��$�%�&
��&

#(��(��#"���%�&�����"���&

Fig. 4. Layered Model of the Application Example

technical low-level policies, e.g. to Policy Rules, or to Binding

Policies. For instance, the security objective defining that AES

with a 256 bit key length must be used has been refined to

a binding policy which assigns the appropriate configuration

variables.

VII. AUTONOMOUS MANAGEMENT

A. General concepts and design

The task of autonomous management (AM) is the detection

or prediction of faulty system behaviour and its correction –

ideally without necessary interaction from a human.

In this article the focus for AM is set on the service

platform. The general operation cycle of AM applies here too:

1) Detect a management incident.

2) Diagnose system under consideration until the causing

problem space of the incident is concise enough for a

suitable autonomous handling.

3) Perform the ”treatment”1.

The generic service platform sets specific constraints for

AM partly due to the medical scenario and the actual service

configuration. However, the autonomous management service

is being designed as a configurable modular system which can

be adapted to various scenarios.

The detection of management incidents is based on the

evaluation of events. These events are named context events,

and the component receiving, storing and distributing these

events is the context store. The real difference to existing event

frameworks is that events are persistent, thus a context event

handler can consult not only one event, but also the trail of past

context events in the system. If this information is pertinent to

a management incident the AM core can be notified with the

set of identifying information. With the history of selected

context events proactive system management is viable by

observing trends in context events. For example the discharge

1the case of a not existing treatment usually routes the incident to a human
specialist

of storage batteries can be monitored in order to give an in-

time alert for replacement to recharge, or the end-of-life of a

component can be detected and a timely maintenance can be

initiated.

The diagnosis is a – potentially iterative – step gathering

additional information necessary for determining the correct

management action.

After this phase the AM core executes the stored man-

agement actions on the system. For the current platform the

proven flexibility of rule-based systems are considered.

Because of the connected nature of the systems the AM

functionality can be distributed if necessary allowing to put

complex management tasks on powerful back-end systems and

only retaining basic ”first aid” measures on the system. This

will be achieved by tapping into the distributed OSGi features.

B. Implementation details

The overall implementation follows the component view

depicted in figure 5.

Fig. 5. OSAMI management components overview

As the platform is OSGi based the architecture exploits

the service-orientation features for a modular and extensible

solution. The dynamic installation and de-installation of ser-

vice bundles in combination with the rich collection of OSGi

services [5], [9] allow an on-demand ”reloading” of function-

ality and remote administration of the installed services. These



features are used for temporary installation and use diagnostic

routines or the installation of necessary updates or corrective

bundles.

Management of a service is not limited to installation and

complete replacement of the service. Usually a service has

certain service management variables and functions made

accessible through a management interface which allows to

adapt the behaviour of a service. This is the starting point for

the management routines of the AM.

In the current platform most context events will be provided

using the policy management as event source. The problem of

getting the right context events still remains in case the service

provides no means to notify the management by design. In

order to observe such services the programming paradigm of

”aspect-orientation”[13] can be used. Using aspects the change

of parameters and values and the call of methods can be inter-

cepted and the necessary event context information extracted

for the autonomous management. Additionally management

routines could modify or even block service calls if necessary.

Of course, it is crucial to the operation of any management

system to understand the semantics of the managed services

and functions and how to integrate them into the appropriate

management actions.

VIII. SECURITY

Security aspects are of special importance in E-Health

applications. For instance, access to security relevant functions

from inside the programming code (e.g., a service to access

medical settings for a patient) has to be restricted. In case of

a distributed application with sensitive data being transmitted

over potential vulnerable channels, the communication needs

to be secured. This is realized by means of the OSGi dis-

tribution solution WS4D-DOI [6], which’s underlying DPWS

implementation (JMEDS, [14]) allows to secure the commu-

nication using Transport Layer Security (TLS). This facilitates

authentication of the participating communication partners as

well as encrypting the actual communication. Due to the nature

of the used distribution solution, this is transparent for the

software developer. Necessary configurations for securing the

communication are realized by the management applied to the

system (cf. section VI).

To secure access to security relevant functions, a security

concept regarding the special requirements resulting from the

distribution of the OSGi platforms is developed. The use of

existing OSGi security concepts (e.g., the OSGi Conditional

Permission Admin [5]) was not possible, because these were

not designed for distributed environments. For instance, they

rely on the Java call stack, which is not present, or not present

in the same context on a remote platform, respectively. The

developed concept is based on the Java Security Manager, and

the Java Authentication and Authorization Service (JAAS), and

relies on granting or refusing permissions whenever security

relevant programming code is about to be executed. It is im-

plemented by means of an OSGi bundle, which performs some

necessary adjustments to the Java Security Manager when it

is started. Furthermore, it provides a service to authenticate

users, for instance based on user name and password. In case

of a successful authentication, the service returns a Subject

(javax.security.auth.Subject), which is used to

represent the role(s) of the current user. The adjustments to the

security manager are, that the implementation of the Java Se-

curity Policy (java.security.Policy), which is the ba-

sis for permission checks performed by the security manager,

is exchanged. The replacement security policy is modified in

that way that it grants (or refuses) permissions for the execu-

tion of Java programming code encapsulated in a Privileged

Action (java.security.PrivilegedAction) carried

out on behalf of a subject, as it is returned by the authen-

tication service. Hence, the Java programming code has to be

developed security aware: parts of the code realizing security

relevant functions must be encapsulated in privileged actions

in order to ensure, that every time this code is about to be

executed the permissions for this execution are checked. If

an required permission is refused, the encapsulated code is

not executed. Instead, an Access Control Exception (java.

security.AccessControlException) occurs.

In the case of a remote service call, the subject on which’s

behalf this call should be performed is serialized and trans-

ferred to the remote platform. There, it is deserialized, and is

used as the basis for granting permissions for the execution

of security relevant programming code resulting from the

remote call. The process of serialization and deserialization

is performed by the OSGi distribution solution, thus being

transparent for the software developer. Due to the fact, that

the remote communication is secured as described before,

transferring those subjects does not constitute a risk.

As mentioned, the subjects used as basis for granting

permissions represent the role(s) of an authenticated user. This

allows to define the permissions for each role. Each user is

associated to one or more roles, therefore the permissions for

all these roles are granted for this user (cf. RBAC [15]). This

is a simplification especially in the E-Health domain, in which

permissions to be granted are often structured in a hierarchical

way. For instance, a nurse may have the permissions to view

the medication settings of a patient, but may not have the

permissions to change this settings. A physician of course

needs to have the permissions to view and to change this

settings. So users being physicians can be associated to the

role ”medical settings reader” as well as to the role ”medical

settings writer”, whereas users being nurses are only associated

to the role ”medical settings reader”. This simplifies the

administration of the permissions granted for each user.

IX. CONCLUSION AND FUTURE WORK

The complexity of modern E-Health systems requires plat-

forms and basic components that can be reused and thus

lower the implementation effort. In this paper the approach of

the European ITEA2 OSAmI project and German OSAmI-D

subproject to create a E-Health system based on components

from a common foundation is described. The paper gives

an overview of the requirements of the stakeholders of an

E-Health system and describes basic components that can



be found in many E-Health systems. These components are

developed for the common foundation of reusable components

of the OSAmI Project and will be available as open source

building blocks that can be reused in E-Health systems or

even other application domains. This foundation should re-

duce the cost of development of E-Health systems and even

advocate the convergence of computer systems from different

application domains.

ACKNOWLEDGMENT

This work has been funded by German Federal Ministry

of Education and Research (BMBF) under reference number

01IS08003.

REFERENCES

[1] M. Lipprandt, M. Eichelberg, W. Thronicke, J. Krüger, I. Drüke,
D. Willemsen, C. Busch, C. Fiehe, E. Zeeb, and A. Hein, “OSAMI-
D: An open service platform for healthcare monitoring applications,” in
Proc. 2nd Conference on Human System Interaction HSI ’09, 2009, pp.
139–145.

[2] A. Helmer, M. Eichelberg, M. Meis, M. Gietzelt, O. Wilken, and
A. Hein, “System zur eskalierenden Notruf- und Informationsweiter-
leitung im häuslichen Umfeld älterer Menschen,” January 2010.

[3] D. A. Clunie, DICOM Structured Reporting. PixelMed Publishing,
Bangor PA, 2000.

[4] R. H. Dolin, L. Alschuler, S. Boyer, C. Beebe, F. M. Behlen, P. V.
Biron, and A. Shabo (Shvo), “HL7 Clinical Document Architecture,
Release 2,” J Am Med Inform Assoc, vol. 13, no. 1, pp. 30–39, 2006.
[Online]. Available: http://www.jamia.org/cgi/content/abstract/13/1/30

[5] OSGi Alliance, OSGi Alliance: OSGi Service Platform, Core Specifica-

tion, Release 4, Version 4.2. OSGi Alliance, 2009.
[6] C. Fiehe, A. Litvina, I. Lück, O. Dohndorf, J. Kattwinkel, F.-J.

Stewing, J. Krüger, and H. Krumm, “Location-Transparent Integration
of Distributed OSGi Frameworks and Web Services,” in Proceedings

of the IEEE 23rd International Conference on Advanced Information

Networking and Applications (AINA 2009). Bradford, UK: IEEE
Computer Society, 2009, pp. 464–469.

[7] S. Chan et al., “Devices Profile for Web Services (DPWS) Specification,”
2006.

[8] A. S. Tanenbaum et al., Distributed Systems: Principles and Paradigms.
Prentice Hall PTR, 2001.

[9] OSGi Alliance, OSGi Alliance: OSGi Service Platform, Service Com-

pendium, Release 4, Version 4.2. OSGi Alliance, 2009.
[10] S. Illner, H. Krumm, I. Lück et al., “Model-based Management of

Embedded Service Systems – An AppliedApproach,” in Proc. of the

20th Int. Conf. on Advanced Information Networking and Applications

(AINA ’06). IEEE Computer Society, 2006, pp. 519–523.
[11] R. Wies, “Policies in Network and System Management – Formal Def-

inition and Architecture,” Journal of Network and System Management,
vol. 2, no. 1, pp. 63–83, 1994.

[12] N. Dulay, E. Lupu, M. Sloman, and N. Damianou, “A Policy Deploy-
ment Model for the Ponder Language,” in Proc. IEEE/IFIP International

Symposium on Integrated Network Management (IM’2001), Seattle, May
2001, pp. 14–18.

[13] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-Oriented

Software Development. Addison-Wesley Professional, 2004.
[14] WS4D JMEDS-Stack, WS4D Initiative,

http://www.ws4d.org/?page id=14.
[15] National Institute of Standards and Technology, “Role Based Access

Control and Role Based Security,” http://csrc.nist.gov/groups/SNS/rbac/.


