
Policy-Based Management for Resource-Constrained Devices and Systems

Oliver Dohndorf, Jan Krüger

and Heiko Krumm

TU Dortmund University

44221 Dortmund, Germany

(dohndorf, krueger)@ls4.cs.uni-dortmund.de

Christoph Fiehe, Anna Litvina, Ingo Lück

and Franz-Josef Stewing

MATERNA Information & Communications

44141 Dortmund, Germany

(christoph.fiehe, anna.litvina)@materna.de

Abstract—The presented policy-based management system
supports autonomous control and adaptation of a distributed
system according to changing conditions and requirements by
means of event-condition-action (ECA) rules. Furthermore, it
supports policy-aware application programming. Application
components can request evaluations of policy expressions and
decisions in order to govern their behavior depending on global
system state and environment conditions. That rich functional-
ity has to be provided very efficiently since the distributed
system consists of resource-constrained devices. The model-
based management (MBM) approach is applied separating
comfortable tool-assisted policy definition and refinement at
design time from lightweight runtime policy enforcement. New
enhancements of MBM extend the policy refinement to the
derivation of ECA rules. The new backend functions generate
executable Java bytecode for policy expressions and decisions
as well as for policy rules. The code is appropriately partitioned
and allocated to the devices. A simplified healthcare scenario
demonstrates the approach and its application.

Keywords-policy, model-based management, device

I. INTRODUCTION

In the current project OSAmI, a healthcare application

scenario is defined for which a comprehensive automated

management is needed. Exceptions and changing conditions

are common in that scenario and must not impair the

proper operation of the system. We rely on policy-based

management which has been acknowledged as a promising

way for management automation [1]. The additional policy

hierarchy approach supports the representation of abstract

business goals and objectives as well as of detailed low-level

policies describing device configurations, parameter settings,

and corrective actions. The actions particularly are defined

by event-condition-action (ECA) rules. The policy design

can concentrate on the definition of abstract and easy-to-

understand high-level policies since the detailed low-level

policies are obtained later on by transformation which is

referred to as policy refinement [2]. According to [2], fully

automated refinement is not possible. In comparison with the

abstract policies, the low-level ones contain additional details

and domain-specific information which has to be provided

by wide expert knowledge.

We enhance and apply the special approach of model-

based management (MBM) [3]. MBM separates policy

definition and refinement from policy enforcement. Definition

and refinement are performed at design time using the

modeling and refinement tool MoBaSeC (Model Based

Service Configuration). The frontend of MoBaSeC is a

graphical model editor recording the system model and

the abstract policies. The refinement functions compute the

refined policies. At the end of the design phase, MoBaSeC’s

backend functions generate configuration data in accordance

with the derived low-level policies. MBM in fact supports

automated policy refinement since it utilizes a hierarchically

structured system model. The model is defined by the

user. It represents the managed system on three interrelated

levels of abstraction. The high-level policies are directly

linked with the system objects of the highest model layer.

System refinement relations connect adjacent model layers

linking objects with their refined implementations of the

next lower layer. The automated policy refinement follows

these system refinement relations in order to obtain the

additional information for generating the low-level policies.

The model architecture is inspired by the DMTF Common

Information Model (CIM) [4] which is an object-oriented

information model for the uniform description of system

structure, functions, and information. It allows to represent

physical and logical objects as well as their mutual relations.

Our enhancements of MBM extend the policy refinement to

the derivation of executable ECA rules. Rule conditions and

actions are defined over configuration and status variables

forming the Management Information Base (MIB) [5] of

the system. Furthermore, the notions of policy expressions

and decisions refer to the configuration and status variables.

Beside of configuration data, MoBaSeC’s new backend

functions generate executable Java bytecode for policy

expressions and decisions as well as for rule conditions

and actions. Moreover, MoBaSeC computes the appropriate

partitioning and allocation of the generated Java bytecode.

Code and data deployment complete the design phase. At

runtime, the code serves as implementation of a management

system which is lightweight and exactly tailored to the

efficient enforcement of the defined policies.

In the sequel, Section II introduces related work. Section III

presents the system structure which forms the basis of our

approach. Sections IV and V depict the design phase, respec-



tively, the runtime phase of our policy-based management. It

is exemplified by an application example from the medical

home care domain. Section VI concludes the paper.

II. RELATED WORK

The work particularly is related to approaches for policy-

based management of healthcare systems covering resource-

constrained devices. AMUSE [6] introduces the architectural

pattern of the Self-Managed Cell (SMC). It provides local

feed-back control based on ECA rule policies which allow

to express the adaptation strategy required in response to

context changes. Policy specification and enforcement is

supported by the Ponder2 tool [7]. MATCH [8] proposes the

policy language APPEL [9] and its adaption to the healthcare

domain by provision of typical triggers, conditions, and

actions. Stylized natural language policies can be edited

remotely using a web-based policy wizard. In the case of

complex application systems, however, the task of policy

specification can become very tedious. In contrast, our

approach represents abstract policies graphically not using

a special policy language. At runtime the low-level policies

are represented as executable Java bytecode, thus avoiding

the interpretation of policy language statements.

III. SYSTEM STRUCTURE

A system is represented as a set of components and

associations between them. Static associations represent

component relations (e.g., ”runs on”, ”is part of”, ”depends

on”). A dynamic association supporting the interaction

between a client and a service is called a binding.

Software Component A software component is realized

as an OSGi bundle and implements domain-specific applica-

tion logic. Figure 1 depicts a component which provides (1)

and/or uses (2) one or more services. The MIB scheme of

the component defines the status and configuration variables.

Status variables describe the management-relevant state of the

component; they are set from the application logic and read

by the management. Configuration variables are means of

configuring the component; they are set by the management

and read from the application logic.

Figure 1: Component Structure

The management variables can be accessed only via a

component manager. A component manager, implemented

as a component itself, is responsible for the management

of its assigned components. It offers three management

services which are to be used from the application logic: the

configuration service for accessing management variables, the

policy service for requesting evaluations of policy expressions

or decisions in the context of the current system state, and

the binding service for the management of bindings.

Binding A binding is a client-service association be-

tween two components, one providing a service, the other

using it. During its life cycle, a binding traverses a series

of control states (e.g., ”requested”, ”established”, ”broken”).

Binding requirements specify the performance, reliability,

substitution, and security constraints of a component.

Bindings are established at runtime by the management

system. In case of failure, they are transparently substituted

if that is allowed by their constraints. That supports a

dynamic, flexible, and fault tolerant configuration of the

system. In many use cases, a client needs stable bindings

to a set of services in combination, for example, a health

monitoring service has to use and correlate the measurements

of several sensors. For this purpose, we resort to the notions of

ensemble [10] and lease [11]. An ensemble is a set of services

to be used in combination. Therefore, the services of an

ensemble are allocated as a whole. The binding is performed

atomically using a two-phase allocation protocol. A lease is a

time-limited contract between a client and a service and can

be regarded as a compromise between stability and flexibility.

During lease duration, the binding is stable and can only be

released in agreement with the client or due to exceptional

conditions. The limited duration supports flexibility since

each lease expiration offers a chance for reconfiguration.

IV. MODEL-BASED MANAGEMENT

The MBM adoption used, models the system on three

different layers. Each layer comprises a self-contained model

of the whole system. The models of adjacent layers are

connected by refinement relations. A refinement relation

associates an object with those objects of the adjacent

lower layer which together represent the higher-layer object.

Figure 2 depicts an example. The layers are:

Use Cases & Aspects (U&A) Use cases with their

aspects are modeled. The system objects are actors, assets,

functions, and use cases connecting them. The policy objects

represent aspects and their attributes. The aspects are assigned

to the use cases. The attributes define properties like medical

characteristics or security requirements. In Figure 2, the use

case ergometer training connects the cardiac patient actor

with its training plan asset, and the two system functions

ergometer control and training control. The training control

function depends on the pulse rate analysis function. In

the policy part, for example, the medical aspect defines the

low-risk patient profile to be applied for that use case.

Services & Domains (S&D) The system is modeled

from a service-oriented point of view. The system objects

are subjects, data, applications, and services. They are

grouped into domains represented by a domain attribute.

The policy objects are objectives defining required service

levels as well as monitoring and control functionalities. In



Figure 2: Application Example

Figure 2, the patient’s subject is user of the training control

application which orchestrates a series of services (e.g.,

ergometer control) and is supported by the management

services for policy evaluation, configuration, and binding.

In the policy part, for example, the medical service level

objective combines the two objectives pulse rate control

and medium level of monitoring. Also, refinement relation

links exist (e.g., between the cardiac patient actor and the

patient’s subject). The function pulse rate measurement is

linked with the pulse rate measurement service A and pulse

rate measurement service B which redundantly provide the

abstract function.

Components & Devices (C&D) The actual software

components, resources, and devices of the system are

modeled. The system objects are credentials, files, bundles,

and devices. The policy objects are ECA rules, binding

requirements, configuration settings, and policy expressions.

In Figure 2, the patient’s credential is present at the home

gateway device which hosts the ergometer bundle, the

application bundle, and the pulse rate analysis bundle. It is

connected with the ergometer device and the ECG device.

In the policy part, for example, one ECA rule is triggered

by a low battery state event of the ECG device. In effect,

the alternative pulse rate measurement service offered by the

ergometer bundle is activated. The patient’s subject and his

credential are connected with a refinement relation link. Pulse

rate measurement service A is refined to the implementing

ECG bundle, pulse rate measurement service B is refined

to the implementing ergometer bundle which provides an

alternative service for pulse rate measurement.

The policy refinement is a step-by-step transformation from

abstract high-level policies to technical low-level policies,

carried out according to the refinement relations. Formally, it

is a function from the domain of U&A to the range of S&D

and from S&D to C&D. It fulfills homomorphic properties

since it preserves the assignment of policy objects to system

objects. For example, an abstract security requirement for

high confidentiality is mapped to the protection requirements

of the corresponding services. This results in specific binding

requirements for cryptographic methods and minimal key

length in the low-level policies. Thus, the policies are refined

from declarative to imperative ones.

V. POLICY-BASED RUNTIME MANAGEMENT

The runtime management system includes component

managers enforcing the derived low-level policies. They mon-

itor, control, and configure the corresponding components.

The assignment of components to their managers and the

allocation of low-level policies are planned by MoBaSeC

during the design phase. Low-level policies are defined

on management variables, event parameters, and constants;

they have the form of conditions, expressions, and variable

assignments. Four policy types can be distinguished:

Policy Expression A policy expression is evaluated on

demand of a component and allows to assess the current

system state. According to the result, the component can react

by adapting its program flow. For instance, an application

requests the evaluation of the system stability which depends

on the status variables of particular components.

Policy Condition A policy condition is a special case

of a policy expression returning a Boolean value (e.g.,

an application requests the decision, whether to stop the

operation or not depending on the current system state).

Policy Rule A policy rule embodies an ECA rule

specifying the actions (variable assignments) to be taken

on a certain event (e.g., the application’s operating mode can

be adjusted in response to an increased energy consumption).

Binding Requirements A binding requirement specifies

non-functional requirements for a client-service association.

To establish the association, the client’s and service’s binding



requirements are intersected. The configuration space of

the association is specified by the result of the operation.

For example, the client has a binding requirement that

communication channels must be encrypted with a key

length of 128 or 256 bit. The service’s binding requirements

prescribe the encryption with a key length of 256 bit. The

intersection result defines that the encryption key length of

the communication channel will be 256 bit.

The binding service establishes, monitors, and releases

client-service associations. Binding establishment is con-

ducted in four phases: firstly, for one association, a set of

functionally suitable services is found, secondly, according

to the binding requirements, a subset of suitable services

is selected. From that set one service with maximum

business value is chosen. The business value is computed

according to a policy expression. Finally, the binding is

established under negotiation of the binding requirements.

The negotiated quality is monitored as follows: change

events of relevant status variables trigger a set of ECA rules

which check for quality of service violations and perform

corrective reconfiguration actions. Only in the rare case where

reconfiguration fails, the binding is released prematurely. The

regular release of a binding is caused by a release request

of the client or by an expiration of the lease period. On a

release request, the binding service forwards the request to

the service which in turn releases allocated resources.

A set of service bindings, which have to be established in

combination, forms an ensemble and is allocated atomically

by means of a two-phase lease-granting algorithm which

is similar to the two-phase-commit protocol. During the

first phase the binding service asks the chosen services

for reservations. When a service grants a reservation, it

is obliged to accept a lease request if it occurs within

the short reservation period. In the case that all services

respond positively and in time, the binding service enters

the second phase and submits the lease requests. Otherwise,

the reservations are canceled or expire.

VI. CONCLUSION

We have presented our ongoing work on the development

of a policy-based management for resource-constrained

devices and systems carried out within the OSAmI research

project [12]. The introduced approach relies on the model-

based management paradigm which combines management

policies and policy hierarchies with a layered system model.

In the design phase, the abstract high-level policies are

transformed automatically into technical low-level policies.

These are defined directly on management variables, events,

and constants and are present at runtime in the form of

efficiently executable Java bytecode.

By now first prototypes are operational; particularly the

presented application scenario has been implemented, tested,

and evaluated by end users. The runtime policy system has a

size of 46 kB incl. 12 kB bytecode representing the derived

low-level policies. Per event at most 5 policy ECA rules

have to be checked. At runtime, the policy evaluation takes

less than 1% of processor performance (100 MHz Foxboard);

each ECA rule is executed in less than 1 ms. At design time,

the MoBaSeC tool takes less than 1 min for the automated

refinement incl. the bytecode generation (2x2.5 GHz desktop

PC). Though the user of MoBaSeC is assumed to be an

expert, he is supported by model examples and patterns.

This work has been funded by the German Federal Ministry

of Education and Research (BMBF).

REFERENCES

[1] M. Sloman, “Policy Driven Management for Distributed
Systems,” Journal of Network and Systems Management, vol. 2,
pp. 333–360, 1994.

[2] J. Moffett and M. S. Sloman, “Policy Hierarchies for Dis-
tributed Systems Management,” IEEE Journal on Selected
Areas in Communications, vol. 11, pp. 1404–1414, 1993.

[3] S. Illner, H. Krumm, I. Lück et al., “Model-based Management
of Embedded Service Systems – An Applied Approach,”
in Proc. of the 20th Int. Conf. on Advanced Information
Networking and Applications (AINA ’06). IEEE Computer
Society, 2006, pp. 519–523.

[4] Distributed Management Task Force, Inc. (DMTF), Common
Information Model (CIM) Infrastructure. Specification, 2009.

[5] ISO, “ISO/IEC 7498-4: Information processing systems – open
systems interconnection – basic reference model – part 4:
Management framework,” 1989.

[6] E. Lupu, N. Dulay, M. Sloman et al., “AMUSE: Autonomic
Management of Ubiquitous e-Health Systems,” Concurrency
and Computation: Practice and Experience, vol. 20, pp. 277–
295, 2008.

[7] K. Twidle and E. Lupu, “Ponder2 – Policy-Based Self Man-
aged Cells,” in Proc. of the 1st Int. Conf. on Autonomous In-
frastructure, Management and Security (AIMS ’07). Springer-
Verlag, 2007, pp. 230–230.

[8] F. Wang and K. J. Turner, “Towards Personalised Home
Care Systems,” in Proc. of the 1st Int. Conf. on Pervasive
Technologies Related to Assistive Environments (PETRA ’08).
ACM Press, 2008, pp. 1–7.

[9] K. J. Turner et al., “APPEL: An Adaptable and Programmable
Policy Environment and Language,” Computing Science and
Mathematics, University of Stirling, CSM-161, 2007.

[10] A. Pohl, H. Krumm, F. Holland et al., “Service-orientation
and Flexible Service Binding in Distributed Automation and
Control Systems,” in Proc. of the 22nd Int. Conf. on Advanced
Information Networking and Applications (AINA’08). IEEE
Computer Society, 2008, pp. 1393–1398.

[11] C. G. Gray and D. R. Cheriton, “Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consistency,”
in Proc. of the 12th ACM Symposium on Operating System
Principles (SOSP ’89). ACM Press, 1989, pp. 202–210.

[12] OSAMI-D Consortium, “OSAmI: Open Source AMbient
Intelligence,” http://www.osami-commons.org, 2009.


