
Location-Transparent Integration of Distributed OSGi Frameworks

and Web Services

Christoph Fiehe, Anna Litvina, Ingo Lück

Oliver Dohndorf, Jens Kattwinkel and

Franz-Josef Stewing

MATERNA Information & Communications

(christoph.fiehe, anna.litvina)@materna.de

Jan Krüger and Heiko Krumm

TU Dortmund University

(krueger, krumm)@ls4.cs.uni-dortmund.de

Abstract

The OSGi Alliance defines an open, modular, and scal-

able service delivery platform. The DPWS specification

standardizes the process of consuming and exposing Web

Services in a lightweight footprint. In our work, we provide

a solution for the mutual integration of OSGi and DPWS.

The approach adopts the mechanisms of distributed object

systems. It employs OSGi-based service proxies and service

skeletons.

1. Introduction

The service-oriented architecture (SOA) is an emerging

architectural style to achieve high interoperability of hetero-

geneous software components and systems. Web Services

implement this principle and provide a convenient way of

creating flexible service-oriented solutions.

The Devices Profile for Web Services (DPWS) [5] en-

hances this approach by standardizing the process of con-

suming and exposing Web Services in a lightweight foot-

print. DPWS targets resource-constrained devices explicitly

so that it can be applied to a variety of embedded devices

used widely in homes and enterprises. A key concept is

the creation of a distributed SOA within heterogeneous en-

vironments. The best evidence of its importance and its

future prospects is the foundation of the OASIS Web Services

Discovery and Web Services Devices Profile (WS-DD) Tech-

nical Committee [9] in the year 2008. Furthermore, DPWS

is natively integrated into Windows Vista.

OSGi runs in a Java Virtual Machine (JVM) and offers an

intra-JVM SOA. It defines an open, modular, and scalable

local service delivery platform. The specification [11] is

created by the OSGi Alliance, a non-profit consortium of ICT

companies and research organizations, which promotes a

process to assure interoperability of applications and services

based on OSGi technology. This technology will surely

benefit from exceeding JVM boundaries and merging it with

distributed SOA environments. In this paper, we present a

solution to this problem that connects OSGi with DPWS and

vice versa. In order to ensure interoperability and a wide

field of application, the principles of both technologies must

be preserved.

This paper is structured as follows: Sections 2 and 3 give

a short overview of the OSGi and DPWS technology. Sec-

tion 4 introduces the principle of distributed object systems.

In Section 5 we outline the related work briefly and present

in Section 6 our requirements. Section 7 describes the archi-

tecture and the design principles of our approach which are

illustrated by an application example in Section 8. Finally,

Section 9 concludes the paper.

2. DPWS

DPWS defines a minimal set of standards and specifica-

tions in order to provide Web Service based communication

for embedded devices. It identifies a core set of Web Ser-

vice specifications comprising the following areas: secure

message transmission, dynamic discovery, description, sub-

scription, and event notification.

According to the DPWS specification, a client can dis-

cover and use services which are hosted by DPWS devices.

The discovery process implies sending ”Hello” and ”Bye”

messages respectively, when a DPWS device joins or pre-

pares to leave a network. A client initiates a search for

particular services through ”Probe” messages. Matching ser-

vices answer with corresponding ”Probe Match” messages.

Data transmission within DPWS is carried out on the basis

of SOAP using HTTP as well as SOAP-over-UDP. The ac-

tual usage of services is performed by means of ”Invocation”

messages. In order to receive notifications from a service on

some event type, a client can register its interest by sending

a ”Subscribe” message. When the event occurs, the client is

informed through a ”Notification” message.



Several implementations of the DPWS specification ex-

ist already. The open source WS4D.org Java Multi Edi-

tion DPWS Stack (JMEDS) [15], developed by TU Dort-

mund University and MATERNA, is characterized by its

modular extensible architecture and features like interpreta-

tion/generation of service descriptions (WSDL) at runtime,

a generic web-based user interface, and a small footprint.

3. OSGi

The OSGi technology provides a service-oriented stan-

dardized way of managing the software lifecycle [14]. Fur-

thermore, the technology caters for the integration of the

pre-built reusable and collaborative components, reducing

maintenance costs by delivering and updating provided ser-

vices dynamically. The core of the OSGi specification com-

prises the OSGi framework which provides an execution

platform for Java-based components, called bundles. The

platform allows to install, uninstall, start, stop, and update

bundles at runtime without restarting the entire system. At-

taching a fragment bundle to its host bundle provides the

ability to extend the host bundle’s class path with classes or

additional resources. Bundles offer their functionality in the

form of services by means of a publish-find-bind mechanism.

For this purpose, a service registry is used where bundles

can register their services under one or more interfaces and

search for other services. Moreover, the OSGi framework

contains a service tracker which notifies registered listeners

about service registration changes. A generic mechanism to

subscribe and receive events from services or the framework

itself is provided through the Event Admin Service.

4. Distributed Object Systems

A distributed system is a collection of independent compo-

nents which appears to the users as a single coherent system.

The object-oriented model for a distributed system is based

on the model supported by object-oriented programming

languages. Distributed object systems [13] provide remote

method invocation for the purpose of transparent object shar-

ing. It means that the actual location of the distributed object

is transparent to the client. A key principle is the separation

between an object’s implementation and its interfaces. The

object encapsulates its state and offers access only through

methods made available by its interfaces.

A typical distributed object architecture is presented in

Figure 1. When a client binds to a distributed object, an

implementation of the object’s interfaces, called a proxy

object, is created. It marshals the input parameters and sends

the invocation request to the object server. At the object

server, the request is dispatched to an object adapter which

activates the object. This means that the object is brought

into the server’s address space, that its local interfaces are

Method

State

Interface

Object

Client
invokes
a method

ServerClient

Proxy

Marshaled invocation
is passed across network

Skeleton
invokes
the same
method

Same
interface
as object

Skeleton

Object Adapter

Figure 1. Distributed Object

activated, and that threads for remote method invocations are

created. Subsequently, the request is forwarded to a skeleton

object which unmarshals the input parameters, invokes the

method of the object, and marshals the output parameters.

Finally, the invocation response is sent to the calling proxy

object which unmarshals the output parameters and returns

them to the callee.

5. Related Work

The federation of distributed OSGi frameworks has been

studied in only a few approaches so far. One of them is

the open source project R-OSGi [12] that realizes the fed-

eration of OSGi frameworks through a middleware layer.

It offers remote access to OSGi services as well as remote

event notification. Another project is Nyota [1] that provides

a lightweight solution to this problem based on Web Service

technology. The DPWS Discovery Base Driver [2, 3] pro-

vides remote access to OSGi services through DPWS. These

three approaches are outlined below.

R-OSGi [12], developed by ETH Zurich, is a middleware

platform running on top of any OSGi framework. It pro-

vides support for sharing OSGi services over a network and

allows a centralized OSGi application to be transparently

distributed among different OSGi frameworks. The goal

of transparency is achieved through dynamic proxy gener-

ation at runtime and a distributed service registry. For this

purpose, R-OSGi creates proxy services on the fly which

forward method calls to the corresponding remote services.

For data transmission, R-OSGi uses a proprietary binary

protocol over persistent TCP connections. The distributed

service registry is realized by means of jSLP, a Java imple-

mentation of the Service Location Protocol (SLP) [7]. The

service discovery mechanism of R-OSGi can be extended by

other protocol implementations.

Nyota [1] exposes OSGi services through Web Service

endpoints. This approach depends on the buddy class load-

ing mechanism which is an extension of the Equinox OSGi

implementation. In order to make an OSGi service remotely

accessible, its registration properties must contain specific

information about the transport protocol and the Web Service

endpoint location. Nyota tracks the services being registered



or unregistered and announces their appearance or disappear-

ance. For data transmission, the two Web Service protocol

implementations Hessian and XFire are supported. In or-

der to use a remote service in another OSGi framework, a

client has to create and register a proxy service first. For

this purpose, the service’s interface classes must be available

in the local OSGi framework. The protocol-specific proxy

generation as well as the service endpoint location are man-

aged by an additional configuration bundle. By means of an

optional service discovery mechanism the proxy generation

can be performed automatically in the background without

any manual intervention.

The DPWS Discovery Base Driver [3] developed in

the ITEA ANSO project is comparable to the UPnP Base

Driver [6] implemented in the Domoware project. Instead of

UPnP, the DPWS Discovery Base Driver integrates DPWS

into OSGi. This approach is described in the RFP 86 [2]

which was contributed to and accepted by the OSGi Alliance.

The DPWS Discovery Base Driver exposes and advertises

OSGi services as DPWS services which can be discovered

and used by DPWS clients without detailed knowledge of

the underlying communication protocols. Local and remote

DPWS devices can be found by means of OSGi standard

mechanisms.

6. OSGi in a Distributed SOA Environment

R-OSGi offers a solution for a federation of distributed

R-OSGi frameworks. It cannot embed OSGi services into

a distributed SOA environment based on open standards.

Therefore, the interoperability and the field of application is

limited. Nyota is tailored to the Equinox OSGi implementa-

tion and depends on its buddy class loading mechanism. It

cannot be executed on another OSGi framework which does

not support this mechanism. The DPWS Discovery Base

Driver exposes OSGi services as DPWS services, its goal

is not to transparently integrate DPWS services in OSGi to

achieve a federation of OSGi frameworks.

To merge distributed SOA environments with OSGi, re-

mote access to OSGi services must be offered by means of

vendor-neutral and broadly accepted standards. DPWS is

a promising approach of bridging the gap between a dis-

tributed and a self-contained SOA environment provided by

OSGi. The solution must fulfill the following key require-

ments which are similar to those defined in [8]:

• Location transparency: For a client, there must be no

distinction between the usage of local and remote OSGi

services. They should be accessed in the same manner

as if they were present in the local OSGi framework.

• Support of legacy services: Existing OSGi services

should not be modified necessarily in order to provide

remote access. The OSGi programming model must be

preserved and should not be subject to any adjustments.

• Fault transparency: Due to the unreliable nature of data

transmission in distributed environments, the introduc-

tion of a new fault model must be avoided. Commu-

nication faults must be handled only by resorting to

standard OSGi functions.

• Dynamics: It must be taken into consideration that

the surrounding environment is continuously changing.

Services appear or disappear and may be temporarily

unavailable. These incidences are the rule rather than

an exception and must not lead to misbehavior.

• Manageability: Only the information about those OSGi

services which should be remotely accessible must be

exposed. It has to be avoided that every OSGi service

can be accessed by external clients or that every remote

OSGi service is integrated in the OSGi framework.

• Compatibility: There are OSGi implementations which

can be executed on very resource-constrained devices.

These limitations must be considered so as not to re-

strict the applicability of the solution. Furthermore, the

solution must not be tailored to a specific OSGi imple-

mentation. Therefore, it can only be resorted to OSGi

standard services.

7. OSGi-DPWS Integration

OSGi provides a component model, but does not directly

address distributed systems. By means of DPWS it is ex-

tended by a set of bundles and services in order to realize

transparent cross-platform access to OSGi services. The

solution relies on existing OSGi and DPWS security mecha-

nisms. An architectural overview of our approach is given

in Figure 2. Dashed arrows represent package dependen-

cies, whereas solid arrows signify usage relationships. We

adapt the principle of distributed object systems, described

in Section 4. According to this principle, we distinguish

between two roles: client and server. On the right, the figure

shows an OSGi framework acting as a server and intend-

ing to offer remote access to the OSGi service of bundle A.

Bundle B, installed in the left-side OSGi framework, intends

to use this service. On server-side, the skeleton generator

bundle finds the service (1) and checks whether appropriate

marshaling services are available (2). It creates the corre-

sponding DPWS device A which hosts the DPWS skeleton

service A (3). By means of JMEDS, wrapped as a bundle,

the availability of the DPWS device is announced through

a ”Hello” message (4). This message is received by the

JMEDS bundle in the client OSGi framework which informs

the proxy generator bundle. If appropriate marshaling ser-

vices are available (5), it creates a package bundle which

contains the required interfaces (6). Furthermore, the DPWS

proxy service A and the proxy A bundle with a corresponding

OSGi proxy service are generated (7). Afterwards, bundle B

can use the OSGi service offered by bundle A (8).



e

DPWS
Proxy

Service A

Package

OSGi Framework (Client)

Bundle B Proxy Generator Marshaling

JMEDS

Proxy A

Interface X

Interface Y

DPWS Client

(4) “Hello”

(5) check

(6) create bundle

(7) create bundl(8) use

OSGi Framework (Server)

(1) find (2) check

Bundle A

JMEDS

MarshalingSkeleton Generator

(3) create device

DPWS
Device A

DPWS
Skeleton
Service A

Figure 2. Skeleton and Proxy Generation

7.1. Skeleton

Skeleton objects provide the connection between OSGi

and DPWS. An OSGi service has to be accompanied by

a specific skeleton object in order to be remotely accessi-

ble. The skeleton unmarshals incoming requests, invokes the

OSGi services, and marshals the responses. This functional-

ity is realized by a DPWS skeleton service.

To handle appearance, disappearance, and changes of

OSGi services at runtime, skeleton objects are generated by

the skeleton generator (size: 89 KB) dynamically on demand.

For this purpose, the service tracker is extended. It manages

the list of services to be offered remotely and triggers the

skeleton generator which analyzes the input and output pa-

rameters of the declared actions. All parameter types have to

be serializable to an XML representation and vice versa. The

primitive types map directly to standard XML types, but the

OSGi specification does not limit the parameter types at all.

Custom types, therefore, need special marshaling services.

If they are currently not available, they can looked up in

an external bundle repository. Those marshaling bundles

which are found are automatically downloaded, installed,

and activated. The marshaling services are registered in the

service registry and can be used for subsequent calls. In

the next step, the corresponding DPWS skeleton service is

generated and added to a DPWS device. We propose a one-

to-one mapping which means that one bundle equates to one

DPWS device. The declared and inherited methods of the

OSGi service correspond directly to operations of the DPWS

skeleton service.

To preserve the OSGi programming model, the usage of

remote services should be identical to local services. There-

fore, remote services must be registered locally under the

same interfaces and properties. It is essential that the inter-

face inheritance hierarchy is maintained and that all methods

are declared in the proper interfaces. DPWS prescribes

the usage of WSDL 1.1 which does not support interface

inheritance innately. To solve this problem, the skeleton

generator adds an additional Java-specific auxiliary Web Ser-

vice to the DPWS device which exposes information about

the underlying inheritance hierarchy and the mapping from

actions to interfaces. This auxiliary service is only available

if the OSGi service is based on an inheritance hierarchy.

To indicate under which interfaces the service is registered,

the port type is extended by the namespace and attribute

osgi:registered.

In order to separate the concerns ”Java type structure”

and ”OSGi service properties”, information about the OSGi

service properties can be retrieved via an OSGi-specific

auxiliary Web Service. We use this approach and do not

embed the property information into the WSDL documents

of the services, because in this case each property change

would lead to WSDL changes and cause communication

overhead.

Finally, the generated DPWS device has to be started.

This step corresponds to the activation in terms of distributed

object systems. The DPWS device is passed to JMEDS

which acts as the object adapter and transmits a ”Hello”

message.

7.2. Proxy

In order to provide location transparency, the usage of

local and remote OSGi services must not differ. For this

purpose, the proxy object is employed which implements the

same interface as the remote service. This proxy service is

registered in the local service registry.

The proxy generation is performed automatically when

a ”Hello” message is received. The proxy generator (size:

95 KB) manages the list of external services to be offered

locally. In case of an appropriate ”Hello”, the generator

analyzes the input and output parameters of the service and

creates the local proxy. The proxy is an OSGi bundle which

offers a local service with the same interface. Internally,



it encapsulates a corresponding DPWS proxy service and

performs the parameter marshaling in the same way as the

skeleton on server-side. The proxy bundle registers its proxy

service in the local service registry. It forwards all method

calls to the encapsulated DPWS proxy service which finally

carries out the remote method invocation.

To create an OSGi proxy service, its Java interfaces must

be reconstructed first. For this purpose, the Java-specific

auxiliary Web Service, provided by the DPWS device on

server-side, is used. If it is unavailable, no interface inheri-

tance is considered. The Java interface classes are created

dynamically by means of Java bytecode generation. We

use the ASM library [4] which is feasible even for resource-

constrained devices.

In dynamic environments, no assumptions can be made

in advance about the classes contained in a specific Java

package. Therefore, every Java package is represented as a

single bundle which hosts its interfaces as attached fragment

bundles. The package is exported by the host bundle and

imported by the proxy bundle. Thus, the Java interface class

objects are available in the OSGi framework and can be

used by other services. The attribute osgi:registered,

described in Section 7.1, indicates under which interface(s)

the OSGi proxy service must be registered. The service’s

properties can be retrieved by sending a request to the OSGi-

specific auxiliary Web Service. If it is not available, no

additional properties are considered. Hence, the OSGi proxy

service can be registered in the service registry providing

transparent access to the actual service.

7.3. Method Invocation

For a client, there is no difference between the usage of

local and remote OSGi services. The client retrieves an OSGi

proxy service from the service registry and casts it to the

appropriate interface. The proxy service communicates with

a corresponding skeleton service via SOAP messages. The

skeleton passes method calls to the remote OSGi service. In

this context, two aspects are of special interest: late binding

and fault handling.

To support late binding, SOAP messages contain the de-

notations of the Java data types. The proxy and the skeleton

interpret them in order to identify the data types which have

to be instantiated. When JMEDS receives a SOAP request,

it is forwarded to the DPWS skeleton service which calls

the method of the actual OSGi service. This method call

may fail and throw an exception. The skeleton represents the

exception in a SOAP message containing a fault code and

a description. The proxy service receives this message and

decides whether to throw an exception or to unregister the

service. It is important not to introduce a new fault model so

that proxy and actual service do not differ in their behavior.

A fault can be ascribed to the service itself or the underly-

ing infrastructure. Faults that are not caused by the service

itself are handled transparently. If retries do not succeed, the

service is unregistered eventually.

7.4. Remote Event Notification

Events are typically notifications of significant changes

in state that enable those interested in these changes to react

accordingly. OSGi allows the development of applications

based on an event-driven architecture. For this purpose, the

Event Admin Service provides an inter-bundle communica-

tion mechanism which is based on a publish and subscribe

model. In order to support remote notification, events pub-

lished by an OSGi service must be transmitted to all OSGi

frameworks holding a corresponding proxy service. For

this purpose, the event converter (size: 42 KB) is provided,

which registers an event converter service in the service reg-

istry. It is notified when an event is published within the

OSGi framework. The bundle creates a DPWS event con-

verter device representing the OSGi framework and hosting

a service which propagates this event across OSGi bound-

aries. Thus, DPWS clients can subscribe to event types of

relevance and are notified on subsequent changes. After

instantiation, the service searches for other event converter

services. It sends out a ”Probe” message and subscribes

automatically if an appropriate service is found.

When an event is published by a remote service, the

Event Admin Service notifies the event converter service. It

marshals the event’s properties to an XML representation and

transmits it via DPWS in the form of a notification message.

The client reconstructs the actual OSGi event object from

the received message. To publish this event in the OSGi

framework, the event converter bundle makes use of the

Event Admin Service. It determines which handlers must be

informed and notifies them afterwards.

Remote event notification is realized by a central instance

within the OSGi framework, the event converter bundle.

DPWS, however, allows the subscription of clients to a spe-

cific service in order to receive events published by this

service. This principle cannot be applied to OSGi services,

because the specification only recommends the indication

of the event publisher, but does not prescribe it. Therefore,

an event received by an event handler cannot be certainly

ascribed to its publisher and its corresponding skeleton ser-

vice. The usage of a central instance is the only possibility

to support remote event notification in a transparent manner.

In order to avoid converting every event and sending it as

a remote event to the subscribers, a filter determines only

those which have to be transmitted.

8. Application Example

We evaluated our approach on several real world scenar-

ios. To illustrate its applicability we chose a scenario from

the home automation domain which comprises different de-



vice types. It demonstrates that not only a federation of OSGi

frameworks, but also an integration of native DPWS services

is feasible. Figure 3 depicts this example schematically.

DPWS
(1) doorbell event

(2) configure(3) configure

Video
Telephony

Mobile Phone
OSGi Framework

Video
Telephony

Proxy
Intercom

Proxy

DPWS Intercom
Device

DPWS
Audio/Video

Service

Home Gateway
OSGi Framework

video data u

⊳ audio data u

video data u

⊳ audio data u

Remote
Intercom

Figure 3. Example Scenario

The intercom system includes a doorbell and an au-

dio/video module which allows two-way audio communi-

cation and one-way video transmission between a house

resident and its visitor. This functionality is provided by

the DPWS audio/video service of the DPWS intercom de-

vice. Furthermore, the scenario comprises two OSGi-based

devices: the home gateway hosting the remote intercom

application and the mobile phone providing the video tele-

phony service. The home gateway plays the key role in the

communication between the DPWS intercom device and the

mobile phone. It offers access to the remote services by

means of proxies generated by the proxy generator bundle,

not shown in the figure. When a visitor rings the doorbell,

the DPWS intercom device informs the home gateway via

a doorbell event (1). Subsequently, the remote intercom ap-

plication configures the video telephony service (2) and the

DPWS audio/video service (3) to establish a connection with

each other. Thus, audio and video data are not transmitted

via DPWS, but out-of-band.

For evaluation purposes, we used three Athlon 64 X2

3800+ machines each equipped with 2 GB of main mem-

ory, Sun’s JVM in version 1.6.0-b11, and Eclipse’s Equinox

OSGi framework in version 3.4.0. The machines simulat-

ing the intercom system, the home gateway and the mobile

phone were connected by a 100 MBit/s Fast Ethernet. In

this scenario, the DPWS skeleton service of the OSGi video

telephony service was created in 1.1 ms on average. The

generation and installation of the OSGi proxy service took

107.1 ms measured from the reception time of the ”Hello”

message. The duration of a remote method invocation includ-

ing data transmission and processing time averaged 4.7 ms.

9. Conclusion

In this paper, we have outlined our work concerning the

federation of multiple OSGi frameworks by means of DPWS

acting as a bridge between them. Our solution integrates

transparently OSGi into DPWS and vice versa, supports

legacy OSGi services, and handles the problem of unreli-

able data transmission in distributed environments. We also

consider that services can appear, disappear, and change un-

predictably at runtime. The applicability of our approach

has been demonstrated with a real-world scenario in the field

of home automation.

Particularly in comparison with R-OSGi, our solution

has the advantage that it relies only on broadly accepted

open standards and avoids the transmission of Java bytecode

across the network. As a result, remote access of OSGi

services is not limited to OSGi- or Java-based clients. The

gap between a self-contained SOA environment provided

by OSGi and a distributed SOA environment based on Web

Service technology could be successfully closed.

The work is funded by the German Federal Ministry

of Education and Research (BMBF) in the context of the

European ITEA 2 project Open Source AMbient Intelligence

(OSAMI) [10].

References

[1] Nyota Online Documentation. http://eclipse.compeople.eu/

wiki/index.php/Nyota:Main, 2007.
[2] A. Bottaro et al. RFP 86 - DPWS Discovery Base Driver,

OSGi Alliance, 2007.
[3] A. Bottaro et al. Dynamic Web Services on a Home Service

Platform. In Proc. of the 22nd Int. Conf. on Advanced Info.

Networking and Applications. IEEE Computer Society, 2008.
[4] E. Bruneton et al. ASM: A Code Manipulation Tool to

Implement Adaptable Systems. In Adaptable and Extensible

Component Systems, 2002.
[5] S. Chan et al. Devices Profile for Web Services (DPWS)

Specification, Microsoft Corporation, 2006.
[6] M. Demuru et al. The Domoware UPnP Service for OSGi,

2004. http://domoware.isti.cnr.it.
[7] E. Guttman et al. RFC 2608: Service Location Protocol,

Version 2, IETF, 1999.
[8] E. Newcomer et al. RFP 119 - Distributed OSGi, OSGi

Alliance, 2008.
[9] OASIS WS-DD Technical Committee. Web Services Dis-

covery and Web Services Devices Profile (WS-DD), 2008.

http://www.oasis-open.org/committees/ws-dd/.
[10] OSAMI-D Consortium. OSAMI Commons: Open Source

AMbient Intelligence, 2008. http://en.wikipedia.org/wiki/

OSAMI-D.
[11] OSGi Alliance. OSGi Service Platform Core Specification –

Release 4, Version 4.1, 2007.
[12] J. S. Rellermeyer et al. R-OSGi: Distributed Applica-

tions through Software Modularization. In Proc. of the

ACM/IFIP/USENIX 8th Int. Middleware Conf., 2007.
[13] A. S. Tanenbaum et al. Distributed Systems: Principles and

Paradigms. Prentice Hall PTR, 2001.
[14] G. Wütherich et al. Die OSGi Service Platform.

dpunkt.verlag GmbH, 2008.
[15] E. Zeeb et al. WS4D: SOA-Toolkits Making Embedded

Systems Ready for Web Services. In Proc. on the 2nd Int.

Workshop on Open Source Software and Product Lines, 2007.


