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Abstract—Bringing heterogeneous devices like industrial ma-
chines, home appliances, and wireless sensors into the Web
assumes the usage of well-defined standards and protocols.
Our approach combines the Web Service standard for devices
DPWS with the embedded system and component management
standard OSGi. It implements the specifications of OSGi
Remote Services, as well as OASIS Discovery, Eventing, SOAP-
over-UDP, and DPWS. Furthermore, runtime WSDL genera-
tion and interpretation is supported, as well as the presentation
URL feature which automatically provides a web browser user
interface for interactive device access. Thus, our approach is an
appropriate and comprehensive basis for the seamless, flexible,
and standard-compliant integration of things into the Web.
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I. INTRODUCTION

Web Services as a most widespread implementation of the

service-oriented architecture (SOA) provide a comfortable

way of creating flexible service-oriented applications for

the Web. The enhancement of this approach is presented

by the Devices Profile for Web Services (DPWS) [1] which

targets resource-constrained embedded devices. Therefore,

the field of application is significantly wide and variable. In

the meantime, DPWS has been published as a specification

within the OASIS Web Services Discovery and Web Services

Devices Profile (WS-DD) [2]. The native integration of DPWS

into Windows Vista and Windows 7 is another convincing

point in favor of DPWS.

The OSGi specification [3] created by the OSGi Alliance

defines an open, modular, and scalable local service delivery

platform. Running within a Java Virtual Machine (JVM),

OSGi offers an in-JVM SOA. Exceeding JVM boundaries

and providing distributed solutions are the main purposes

of the OSGi Remote Services specification introduced in the

latest version of the OSGi Service Compendium. Furthermore,

several OSGi framework implementations allow the usage

on resource-constrained devices.

Combining these two technologies is a promising way to

ensure a wide field of application in bringing heterogeneous

devices into the Web and building modular, distributed,

service-oriented solutions. In this paper, we present our

implementation of DPWS-OSGi mutual integration [4] and

the latest results of our current work. In particular, we focus

not only on the federation of isolated OSGi frameworks but

also on the integration of native DPWS devices. We hope

that our approach will be the next step on the way to the Web

of Things where versatile devices and objects are connected

seamlessly to the Web providing for modular, flexible, and

service-oriented solutions.

The paper is structured as follows: Section 2 provides

the technical background of our approach and introduces

DPWS and OSGi technologies. Related work is presented

in Section 3. In Section 4 we define the key requirements

for the solution which is introduced in detail in Section 5.

We demonstrate the applicability of our approach by means

of an example from the medical home care domain and

present some noteworthy performance measurement results

in Section 6. Section 7 sums up the paper.

II. RELATED WORK

The Universal Plug’n’Play (UPnP) was the first spec-

ification of a service-oriented infrastructure for embedded

application scenarios. DPWS, being inspired by UPnP, defines

a minimal set of Web Service standards and specifications

targeting the provision of Web Service based communication

for embedded devices. The special attention is paid to

secure message transmission, dynamic discovery, description,

subscription, and event notification.

According to the specification, a DPWS device hosts

several services which can be discovered and used by DPWS

clients. A device sends ”Hello” and ”Bye” when joining

and leaving a network, respectively. Searching for particular

services is performed through sending a ”Probe” message.

Matching services respond with ”Probe Match” messages.

”Invocation” messages are aimed for performing the service

usage. The eventing mechanism comprises subscribing for

particular event types by sending a ”Subscribe” message

and informing the subscribed clients through a ”Notification”

message. The basic messaging within DPWS employs SOAP

using HTTP and SOAP-over-UDP.



Among the existing implementations of the DPWS spec-

ification, the open source Java Multi Edition DPWS Stack

(JMEDS)1, is characterized by its modular extensible archi-

tecture and remarkable features. These include interpretation

and generation of service descriptions (WSDL) at runtime, a

web browser user interface accessible via the presentation

URL, and a small footprint.

A service-oriented standardized way of managing the

software lifecycle is one of the main aims of the OSGi

technology [5]. OSGi provides for the integration of pre-built,

collaborative components and caters for the reusability and

maintenance costs issues through dynamic service provision

and update mechanisms. The OSGi specification defines the

OSGi framework which offers an execution platform for Java-

based components, called bundles. The platform permits to

install, uninstall, start, stop, and update bundles at runtime

without restarting the entire system. Moreover, extending the

bundle’s class path with classes or additional resources is

possible through attaching a corresponding fragment bundle

to the host bundle. The functionality of the bundles is offered

in the form of services in a publish-find-bind way. The

services are registered under one or more interfaces within

the service registry and can be found by other bundles

when necessary. Event Admin Service provides a generic

mechanism to subscribe for and receive events from the

framework or other services.

The extension of the self-contained SOA environment

provided by OSGi to a Distributed OSGi framework was

firstly addressed in RFC 119 [6]. This resulted in the OGSi

Remote Services specification introduced in the latest version

of the OSGi Service Compendium [3]. The challenge of

bridging isolated OSGi frameworks has been taken up by

several researchers up to now. Apache CXF [7] provides the

reference implementation of the RFC 119 specification.

R-OSGi [8], developed by ETH Zurich, provides support

for sharing OSGi services over a network and allows a

centralized OSGi application to be transparently distributed

among different OSGi frameworks. For this purpose, the

application must be manually factored into distributable

components. Dynamic proxy generation at runtime and a

distributed service registry serve the aim of transparency.

For data transmission, R-OSGi uses a proprietary binary

protocol over persistent TCP connections. For realization

of the distributed service registry jSLP [9] is used, a Java

implementation of the Service Location Protocol (SLP) [10].

The service discovery mechanism of R-OSGi is extendable

by other protocol implementations.

The Device Access specification in [3] defines the generic

automatic detection and attachment of existing network

devices on an OSGi framework. Following these concepts,

the DPWS Discovery Base Driver [11], developed within the

ITEA ANSO project, implements the integration of DPWS
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devices and services into OSGi. With this solution, it is

possible to discover and use DPWS devices and services

without concerns about underlying communication protocols.

Similarly, the UPnP Base Driver specified in the UPnP Device

Service Specification [12] defines a generic bridge between

UPnP and OSGi technologies. One of its implementations

was developed within the DomoWare project [13].

III. REQUIREMENTS

Designing distributed applications, where no homogeneous

devices are present and no centrally managed infrastructure

is available, is a highly complex issue. Enabling everyday

devices to connect to the Internet as well as making them

discoverable, linkable, and usable by means of common

open standards is not sufficient. There is a strong need for

modular, global solutions for applications which are based

on reuse, seamless integration, and runtime composition of

services provided by these devices. The self-contained SOA

environment of OSGi extended to exceed JVM boundaries

is a suitable technology for this purpose, whereas DPWS

allows solutions for devices with constrained resources.

We define the following key requirements for DPWS-OSGi

mutual integration:

• Location transparency: The usage of local and remote

OSGi and DPWS services must not differ for clients.

Remote services are to be accessed as if they resided

the local framework.

• Support of legacy services: Providing services remotely

should not require any modifications.

• Fault transparency: The communication faults specific

for a distributed environment must be handled in the

same way as the reliability aspect is addressed by OSGi.

• Dynamics: The continuous changes in the topology

imply that services appear, disappear, or become tem-

porarily unavailable all the time. These facts should not

impose any restrictions and must be regarded as a norm.

• Manageability: Local clients – DPWS as well as OSGi –

should be able to access only those services that are

intended to be remotely available. On the contrary,

a mechanism should be provided to integrate only

whitelisted remote services into a local OSGi framework.

• Compatibility: We set a high value on the ability to

federate different OSGi implementations. Therefore,

only standard OSGi services can be used in the solution.

Moreover, the solution must also be applicable to those

OSGi implementations which are designed for resource-

constrained devices.

IV. WS4D.ORG DPWS-OSGI INTEGRATION

Addressing the listed requirements we integrate DPWS and

OSGi technologies mutually and realize transparent cross-

platform access to native services relying on existing security

mechanisms. Figure 1 gives an architectural overview of our

approach. According to the conventional model of distributed



Figure 1. Skeleton and Proxy Generation

object systems [14], we distinguish between a client which

uses and a server which provides a service. Acting as a

server, the OSGI framework, on the right, intends to offer

remote access to its OSGi service of the bundle A. At the

same time, the native DPWS device A’ provides access to its

DPWS service A’. Bundle B, on the client OSGi framework

is able to use these services. The native DPWS client has

also the ability to use the service of the bundle A installed

in the server OSGi framework. On finding the service (1),

the skeleton generator bundle checks the availability of the

required marshaling services (2). After that, it generates the

DPWS device A hosting the corresponding DPWS skeleton

service A. JMEDS which is wrapped as an OSGi bundle

announces the presence of the DPWS device by sending a

”Hello” message (4a) to the client OSGi framework and to

the native DPWS client respectively (4b). On receiving a

”Hello” message from the server OSGi framework (4a) or

from the native DPWS device (4c), the JMEDS bundle on

the client-side informs the proxy generator bundle. After

checking the required marshaling services (5), the proxy

generator generates a package bundle containing the required

interfaces (6). It creates the DPWS proxy service A and

proxy A bundle with the appropriate OSGi proxy service (7).

Thus, bundle B is able to use the OSGi service provided by

bundle A and the native DPWS service A’ respectively (8).

A. Skeleton

In order to be remotely accessible, an OSGi service

must be supplied with a corresponding skeleton object.

Thus, the DPWS skeleton service unmarshals incoming

requests, invokes the corresponding OSGi services, and

marshals the responses. Skeleton objects are generated by the

skeleton generator on demand. So, the issue of dynamics of

OSGi services at runtime, i.e. appearance, disappearance and

changes of services, is addressed. On arrival of services, the

skeleton generator recognizes it and analyzes the input and

output parameters of the declared actions. Being serializable

to XML representation and backwards is a basic requirement

for parameter types. The primitive types map directly to

standard XML types, the OSGi specification, however, does

not restrict the parameter types to the primitive ones. So,

custom types need special marshaling services. In case they

are not available, they can be looked up in an external bundle

repository, downloaded, installed, and started automatically.

Further, they are registered in the service registry and can be

used later on. After that, the corresponding DPWS skeleton

service is created and added to a DPWS device. One DPWS

device is generated for each remotely accessible OSGi bundle.

The declared and inherited methods of its OSGi services map

directly to DPWS skeleton service’s operations.

It is important that the usage of remote services does not

differ from the usage of local services for a client. As a

result, remote services are registered locally under the same

interfaces and properties. A great challenge is to preserve

the interface inheritance hierarchy, i.e. to declare all the

methods in the proper interfaces. WSDL 1.1 which is used in

DPWS, however, does not support the interface inheritance

hierarchy natively. In order to handle this, an additional Java-

specific auxiliary DPWS service is added to the device to

provide information about the inheritance hierarchy and the

mapping of actions to interfaces if needed. Moreover, an

OSGi-specific DPWS service is provided, in order to expose

information about the OSGi service properties. So, we do not

embed the property information into the WSDL documents of

the services, in order not to cause communication overhead

on each property change. The information offered by the

auxiliary services is useless for communication with native

DPWS clients and is ignored in this case.

Finally, the generated DPWS device is started. In terms of

distributed object systems, we speak about activation. JMEDS,

acting as an object adapter, gets the generated DPWS device

and sends a corresponding ”Hello” message.

B. Proxy

For the purpose of location transparency, the proxy object

which implements the same interface as the remote service is

employed. It is registered and can be looked up in the local

service registry. On receive of a ”Hello” message, the proxy



generator which holds a whitelist of external services to be

offered locally creates the local proxy automatically. The

generated proxy is an OSGi bundle offering the local OSGi

service under the same interface. Similarly to the server-side

skeleton, the encapsulated DPWS proxy service performs the

required parameter marshaling and carries out the remote

method invocation according to the forwarded method call.

Creating an OSGi proxy service requires the reconstruction

of the corresponding Java interfaces, firstly. In case of con-

necting isolated OSGi frameworks, a Java-specific auxiliary

service, provided by the server-side DPWS device, is involved.

It is assumed that no interface hierarchy is present, if the

service is not available. The properties of the service can

be requested from the OSGi-specific auxiliary service. If it

is not available, it is assumed that no additional properties

are present. In case of integration of native DPWS devices,

the existing rules for mapping WSDL to Java are used. By

means of Java bytecode generation, the Java interface classes

are created dynamically. We use the ASM library [15] which

is suitable for embedded devices. In dynamic environments,

no assumptions can be made in advance about the classes

contained in a specific Java package. This is relevant for

integrating remote OSGi services where the packages are

fixed as well as for native DPWS services where the packages

are deduced from the WSDL. Therefore, every Java package

is represented as a single bundle which hosts its interfaces

as attached fragment bundles. The package is exported by

the host bundle and imported by the proxy bundle. Thus,

the Java interface class objects are available in the OSGi

framework and can be used by other services.

C. Method Invocation

For OSGi clients there is no difference between the usage

of local or remote OSGi services and native DPWS services

respectively. The client retrieves an OSGi proxy service from

the service registry and casts it to the appropriate interface.

Equally, there is no difference for native DPWS clients in

the usage of native DPWS services and OSGi services.

OSGi client using remote OSGi service The proxy

service communicates with a corresponding skeleton service

via SOAP messages. The skeleton passes method calls to

the remote OSGi service. In this context, two aspects are of

special interest: late binding and fault handling. To support

late binding, SOAP messages contain the denotations of the

Java data types. The proxy and the skeleton interpret them and

instantiate the identified data types. SOAP requests received

by JMEDS are forwarded to the DPWS skeleton service

which calls the corresponding method of the actual OSGi

service. If the method call fails and an exception occurs, a

SOAP message containing the exception type and content is

returned to the proxy.

OSGi client using native DPWS service In this case,

the SOAP messages used for communication between proxy

and a native service does not contain Java data types.

Instead, the proxy service decides on the basis of predefined

rules which Java data type is to be instantiated. Faults

within the native service invocation are submitted within

the fault element of the SOAP message. They are mapped to

appropriate Java exceptions and thrown in the proxy service.

DPWS client using OSGi service The DPWS client

communicates with the skeleton service representing an OSGi

service. The exceptions are mapped to the SOAP message’s

fault element and can be processed by the client. As noted

above, the SOAP message of the method invocation does

not contain Java data type information, since a native client

can not handle it.

In any case, the method invocation may fail due to network

problems resulting in SOAP messages getting lost. In OSGi,

the proxy service receives a SOAP fault and unregisters

the service if retries do not succeed. It is important not to

introduce a new fault model so that proxy and actual service

do not differ in their behavior. The reaction of native clients

regarding SOAP faults can not be influenced.

D. Remote Event Notification

The eventing mechanism in the OSGi specification is

realized by means of the Event Admin Service. It provides a

publish-subscribe model for communication within a single

OSGi framework. To support remote notifications, events

published by an OSGi service have to be forwarded to all

OSGi frameworks that hold the corresponding proxy service.

Thus, the event converter bundle provides an event converter

service and registers it in the service registry. On events

published within the OSGi framework, it is notified. A DPWS

event converter device represents the OSGi framework and

hosts a service to propagate the event across OSGi boundaries.

DPWS clients subscribe to event types of interest and get

notifications on changes. In case of integration of native

DPWS devices, the DPWS proxy service subscribes by the

native services directly.

The Event Admin Service notifies the event converter

service on events published by a remote service. The event

converter marshals the event’s properties to XML representa-

tion and sends it as a DPWS notification. The native DPWS

client can handle this notification straightaway. In order to

reach the corresponding OSGi client, the corresponding OSGi

event is reconstructed from the received DPWS message.

Finally, the event converter bundle determines which handlers

must be informed and notifies them.

In DPWS, it is allowed to subscribe to a specific service.

The OSGi specification, in contrast, only recommends the

indication of the event publisher, but does not prescribe it.

Thus, it is not possible to assign a received event to its

publisher and corresponding skeleton service definitely. To

handle this, the remote event notification is performed by

a central instance of the event converter within the OSGi

framework. A filter is used to specify, which events are to

be published remotely.



Figure 2. Structure of the Application Example

For DPWS services that offer evented operations, the event

converter is not needed. The proxy subscribes to the operation

itself and publishes received events as OSGi events in the

local platform using the Event Admin Service. If native

clients are interested in OSGi events, they simply subscribe

DPWS events provided by the event converter.

V. APPLICATION EXAMPLE

We have tested and evaluated our solution on several real

world scenarios. To demonstrate its capabilities, we present

a simplified example from the medical home care domain

which was adapted from the more sophisticated scenario used

within the research project OSAmI [16].

According to the scenario, a cardiac patient has to conduct

a series of rehabilitation trainings at home which has to

be telemedically supervised by a medical supervisor, e.g.

a physician or a sports scientist. Therefore, the patient

is equipped with a training device, a bicycle ergometer,

and some medical sensors to monitor his vital signs. In

this example, pulse rate and blood oxygen saturation are

monitored. Furthermore, the patient is supplied with a so-

called home gateway, which provides a platform for running

the application to control the training device and medical

sensors and handles the communication with the supervisor.

During the training, the application supplies the patient with

information about his health state and the training’s progress.

The training itself is divided into three phases: warm up,

actual training, and cool down. For each phase, the supervisor

defines the appropriate settings like the target ergometer

load as well as upper and lower thresholds for the vital

signs. To adjust these settings at runtime and to monitor

the training session, the supervisor is supplied with the

appropriate supervisor application which runs on the so-

called clinic gateway. In our example, the home gateway

and the clinic gateway are in the same LAN. Within the

OSAmI project, we will implement this demonstrator as a

real world solution with the gateway devices connected to the

Internet. Communicating over the Internet will enforce the

consideration of several additional security aspects, which

are not regarded here for the sake of simplicity.

Figure 2 depicts the hardware involved in the scenario.

Standard PCs with x86 Intel Core 2 Duo CPUs and 1 GB

RAM each represent the home gateway (A) and the clinic

gateway (B). The communication link between these two

gateways is provided using a switched 100 MBit/s network

connection (1,2). As an interface to integrate the medical

sensor (E) and the bicycle ergometer (F), which both do

not have a network connection interface, the Foxboards

are used (C,D). Technically, the Foxboards are Linux-based

embedded systems with a 100 Mhz Axis Etrax 32 bit RISC-

based CPU, 32 MB RAM and 8 MB ROM [17]. On the one

hand, the Foxboards are connected to the medical sensor

using a serial 5V-TTL-level or to the ergometer with a RS-

232 connection (5,6). On the other hand, the Foxboards

are connected to the network using their on board network

interfaces (3,4).

The software comprised in the scenario consists of a

simple supervisor application and a home gateway application.

Both are realized as OSGi bundles running in separated

OSGi frameworks on the clinic (B) and the home gate-

way (A) respectively. The home gateway PC uses Microsoft

Windows XP as an operating system, where as the clinic

gateway PC uses Windows Vista. The Foxboards host native

DPWS services to provide access to the functions of the

medical sensor (C,E) and the ergometer device (D,F). These

services are implemented using JMEDS and run inside a

Kilobyte Virtual Machine (KVM), a minimalist JVM for

resource-constrained devices. Invoking an operation of the

DPWS services (e.g. setting the target load of the ergometer

device (D)) is translated into the appropriate command

sequence for the serial communication which is transmitted

to the device connected to the serial port. Vice versa,

data received over the serial connection from the medical

sensor or the ergometer is made available by means of the

corresponding DPWS services (e.g. the result of a pulse

measurement received from the medical sensor is published

in the network as a DPWS event). The DPWS service to

control the ergometer as well as the service to use the medical

sensor are needed in the training control application running

on the home gateway. For this purpose, they are integrated



into the OSGi framework using our DPWS-OSGi integration.

Hence, the usage of the DPWS service (e.g. setting the

ergometer target load) does not differ for a client from the

usage of a regular OSGi service. Also, the received DPWS

events (e.g. pulse measurement results) are published within

the OSGi framework as regular OSGi events. The application

on the home gateway provides in turn some functionality

to be used by the application running on the clinic gateway.

In detail, a function to define the mentioned phase settings

is provided, as well as alarm events which are fired if the

patient’s pulse rate exceeds the defined threshold levels. Here,

the use of DPWS-OSGi integration allows to implement this

function as a regular OSGi service which is registered in

the home gateway framework. The alarm events can be

realized as regular OSGi events which are propagated into

the home gateway framework. According to the configuration

of the bundles in the home gateway OSGi framework, this

service is made available for remote use, and the OSGi events

are propagated as DPWS events. The bundles in the clinic

gateway OSGi framework, on the other hand, are configured

to integrate this remote service into the local framework and

to propagate the received remote events as OSGi events into

the framework. Thus, the supervisor application can use the

remote service to configure the training phases and remote

alarm events to monitor the patient during the training.

The outcomes of measurement experiments in that scenario

shall give a hint about realistic footprints and performance

values. The generated proxy bundles are relatively small

in size. For example, the proxy bundle of the service to

configure the phase settings has a size of just 3 kB. In case

of integrating the ergometer control service, a native DPWS

service, the proxy has a size of 4.1 kB. The proxy bundles

for remote service access were created at runtime within

107 ms. The generation of the skeleton for a remote OSGi

service took only 1.1 ms. The average time for invoking a

remote OSGi service, running on the home gateway, was

4.7 ms and the average time for invoking a native DPWS

service, hosted on the embedded device, was 14.8 ms.

VI. CONCLUSION

In this paper, we have presented our current work con-

cerning the mutual integration of the DPWS and OSGi

technologies. The solution allows to connect isolated OSGi

frameworks and supports the usage of native DPWS devices

and services. In comparison to the DPWS Discovery Base

Driver, our remote service integration is fully transparent

and in contrast to R-OSGi relies only on broadly accepted

open standards and avoids the transmission of Java bytecode

across the network. As a result, the remote access to OSGi

services is not limited to OSGi- or Java-based clients. The

applicability of the approach was demonstrated by means of

a real-world example from the field of home medical care.
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