TEMPORAL LOGIC
Heiko Krumm
University of Dortmund, Department of Computer Science

Symbolic logic generally supports the reasoning with propositions, i.e., with statements to be evaluated to true or false.
Tempora logic is a specia branch of symbalic logic focussing on propositions whose truth values depend on time.
That contrasts with the clasdcd logic point of view where the truth value of a repeatedly uttered proposition must
aways be the same and must neither depend on the modalities of the repetition nor on additional information.
Tempora propositions typicdly contain some (explicit or implicit) referenceto time conditions, while classical logic
deds with timeless propositions. For instance @nsider the foll owing examples:

A: “The moon is asatellite of the eath”

B: “Themoonisrising’

C: “The moon is setting”
Proposition A can be viewed as timeless since it is true in past, present, and future. In contrast, the propositions B and
C have atemporalized aspect and refer to the implicit time condition “now”. Consequently tempora logic gpplies to
time-related universes of discourse where behaviors and courses of events are of interest. As classca logic formulas
can charaderize static states and properties, tempora logic formulas can describe sequences of state changes and
properties of behaviors.

Classica logic comprises different logics; several variants of propcsitional logic, first order predicate logic, etc., exist
with different sets of logical operators and inferencerules. Likewise some temporal |ogics were proposed which differ
with respect to their formula syntax, semantics, and expressiveness. A tempora logic, however, basically results from
an extension of aclassical propositiond or predicate logic by temporal quantifiers introducing temporali zed modalities.
Usudlly, there ae at |east the two quantifiers m (denoting “aways’) and O (denoting “eventually”) and typicd formulas
are similar to following examples:

D:oB “The moon will berising eventually”
E:m0OB “The moon will berising again and again”
F: m(BOo OCQC) “Moon rise leals to moon setting”

The example formula D is true, if the moon is rising now or will be rising in some future point of time. Formula E
exemplifies that combinations of temporal quantifiers can denote more complex time mnditions, eg., “always
eventualy” can correspond to the natural language term “again and again”. Finadly, formula F is an example of a
“leads-to” pattern describing that aways a precondition B will eventually result in a postcondition C.

Due to its tempora quantifiers temporal logic is a @mnvenient and appropriate means to reason with time-related
propasitions. Indeed, classcd logic can aso handle tempora properties, but the formulas tend to be complicated since
points of time have to be explicitly represented in the underlying universe. The formula E may serve & example and
underpin the usefulness of tempora logics. The eay-to-read tempora logic formula E corresponds to following
predicate logic formula: “For all subjects x a subject y exists such, that — if x is a point of time —y is a point of time
equal or later to x and themoon isrising at y”.

History

Tempora logic is rooted in the field of exad philosophy and is a variant of modal logic. Moda logic deas with
propasitions which are interpreted with respect to a set of possible worlds. The truth value of propasitions depends on
the respective world and besicdly two operators “necessarily” and “possibly” exist which denote that a propasitionis
true in al posshle worlds res. in some possible worlds. Even the ancient Greek phil osophy schods of the Megarians,
Stoics, and Peripatetics as well as Aristotle used some temporalized form of these modal operators. During the Midde
Ages Arabian and European logicians resumed and refined the ancient approaches in order to discern diff erent types of
necessity and possbility. In modern times, the interest in symbalic logic grew during the first half of the 20th century,
and — with some delay — new modal and temporal |ogic approaches occurred. First publi cations date badk to the 1940's.

In particular, the logicians Prior, Rescher, Kripke, and Scott contributed to the development of modern tempora logic.
Kripke presented a formal possible world semantics for moda logics. Prior proposed a temporal interpretation. An
ordered set of posshble worlds can correspond to a temporal sequence of states. In result, the two basic modal operators
“necessarily” and “possibly” bemme the temporal quantifiers “always’ and “eventualy”. Based on the linearity of time
additional operators like “next” and “until” as well as past operators were introduced. Rescher and Urquhart outlined
the history and introduced several major systems of temporal logic in [5]. In 1974, Burstall proposed the goplication o



temporal logic in computer science for the first time. Pnueli improved this approacd in [4], which is regarded as the
classc sourceof temporal logic based program specification and verification.

Computer Science Application

In severa fields of computer science there is a needs for the forma description of event-discrete processes and the
corresponding reasoning. In the main, we have to mention the formal specification and verification of so-called reactive
systems, the formalization of red-life processes as well as the semantics of natural language commands to be modeled
in artificial intelligence and finaly the handling of dynamic consistency conditions in data base systems.

We focus on reactive systems. In particular, Manna and Pnueli recognized in [3] that reactive systems are of growing
interest and that temporal logic is well-suited for their forma specification and verification. In contrast to those
programs which transform starting states into final results and which may be spedfied by pre- and postconditions,
readive systems interact with their environment during runtime and the curse of interadions and system events is
esential. The range of reactive systems is wide and growing. It comprises embedded systems, processcontrol systems,
and all types of interactive, concurrent or distributed hard- and software systems. Due to their inherent concurrency,
their eaborated fault-tolerance, coordination, and interaction mechanisms distributed systems are rather complex
readive systems and usually need particular design and development tods which support the formal handing of
dynamic aspects. Here, temporal logic is profitably applied with respect to foll owing topics:

1. Formal specification: Tempora logic formulas srve & precise, concise and hinding descriptions of systems and
components (e.g., as proposed by Lamport, Manna, and Pnueli in [2] res. [3]).

2. Formal verification: The rules of atemporal logic proof caculus are gplied to show the crrectnessof atempora
logic specification with respect to more abstract system specifications (e.g., in[2] and [3]).

3. Requirements description: During the ealy system design the results of the requirements constraining the
functional system behavior are represented by a set of temporal logic formulas.

4. Specification chedks: Even if the design specifications use other means than temporal logic (e.g., other forma
description techniques, see SDL, Estelle, and LOTOS, see also UNITY), temporal logic may be applied
additionaly in order to describe requirements and plausibility conditions. Meanwhile several approaches exist
which support the toadl-based checking of formal system spedfications with respect to tempora logic conditions
(see Model Chedking).

Linear and Branching Time

Usudlly, atempora logic can be dassified as so-cdled linear-time logic which considers behaviors modeled as linear
sequences of states. Within one behavior, each state has exadly one future. Additionaly, so-cdled branching-time
logics are known. Here, the formulas refer to treestructured behaviors where astate can have severd futures. The
behavior-trees can directly correspond to tree models of non-deterministic systems (e.g., synchronizaion and
communication trees, see Calculus of Communicating Systems). A corresponding prominent branching-time logic is
CTL (computation treelogic, proposed by Clarke, Emerson, and Sistlain [1]). Its tempora quantifiers directly support
the navigation in behavior trees.

Non-deterministic systems, however, have not necessarily to be modeled by behavior trees. Likewise, a set of linear
state sequences can form a model of a non-deterministic system where ead state sequence @rresponds to one posshle
evolution of the system. In comparison with this linea-time gproad, branching-time logics additionally provide for
notions of potential behaviors since branching-time formulas can describe properties of branches which correspond to
subsets of the possble exeattion sequences while linear-time formulas generdly state properties of al possible
Ssequences.

Variants

Besides of the mentioned distinctions between tempora propaositiona and predicate logics and between linear-time and
branching-time logics, there ist further variants. Some introduce additional temporal quantifiers like “aways in the
past”, “sometimesin the past”, “next”, “precedes’, “until”, and“leads-to”. Others extend the time moddl, e.g., in order
to describe time-intervals or red-time quantifications. Furthermore, partial-order temporal logics were propased which
directly refer to partia-order representations of concurrency (see Concurrency Model).



Example

To exemplify the gplication of tempora logic for the spedfication and verification of systems we outline some
formula and proof patterns proposed by Lamport in [2] with respect to the Tempora Logic of Actions TLA whichisa
compact linea-time logic for the reasoning on state-transition systems. He cnsiders the two commonly known classes
of properties, invariance and eventuality. Moreover, the crrednessof design refinements can be proven with respect to
the preservation of properties.

An invariance property P is expressed by a formula “e P" where P is a predicate logic formula describing a set of
exeaution states. Inter dia P may spedfy following typicd correctnessconditions of a system:

1. Partid correctness. P isanimplication of the form “system terminated 0 correct results computed”.
2. Deallock freedom: P appliesto a set of states, the system is not deadlocked.
3. Mutual exclusion: P assrtsthat at most one processisin acritical section.

By means of auxiliary history variables al interesting safety properties of a system can be expressd as invariance
properties (see Safety Property).

The forma proof of invariance properties is supported by a proof rule applying induction onthe course of system
exeaution steps. At first, one proves that ead initia state implies P. Furthermore, ead transition class of the system
has to be mnsidered. Each transition has to transform states where P is true into successor states where P istrue again.

Eventuality properties assert that some events will eventually happen during ead exeaution d a system. The following
typicd properties can be esily expressed in temporal logic:

1. Termination: A formula of the form “0 terminated” can assert that ead execution leads to a state where the system
isterminated.

2. Live service Each state representing that a service request is pending will be followed by a state the request is
served: “m (requested O O served)”.

3. Fair message transfer: If a message is sent often enough over a loose channd, then it is eventually delivered:
“(m O sent) O (O delivered)”.

Eventuality properties can expressthe typicd li veness requirements of systems (see LivenessProperty).

The proof of eventudity properties can be reduced to the proof of a series of transitive leads-to properties of the form
“a (PO 0Q)". The proof of asinge leads-to property is supported by the so-caled lattice rule which is based on the
existence of awell-founded order. The order asserts that a finite number of exeaution steps is aufficient to reach a state
where Q istrue.

Systems can be described by formulas on abstract levels as well as on more implementation-nea ones. Thus,
specifications, refinement steps of a design, and implementations can be represented. That is of grea interest, since
valid implications correspondto system refinements which are @rrect in the usua understanding of system developers.
Let the formula Soec describe a system Son amore astract level. A formula lmpl describes a aorrect refinement of S,
if theimplicationformula“Impl O Spec” isprovable.

References

[1] EM. Clarke, E.A. Emerson, and A.P. Sistla, Automatic Verification of Finite Sate Concurrent Systems Using
Temporal Logic Specifications, ACM Transactions on Programming Languages and Systems, 8(2): 244-263, 1986

[2] L. Lamport, The Temporal Logic of Actions, ACM Transactions on Programming Languages and Systems,
16(3):872-923, 1994

[3] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems, Springer-Verlag, 1992

[4] A. Pnudi, The Temporal Logic of Programs, Procealings of the 18th IEEE Symposium on Foundations of
Computer Science, pp. 46-57, 1977

[5] N. Rescher and A. Urquhart, Temporal Logic, Springer-Verlag, 1971
Cross Reference:

CTL see Tempord Logic

Formal Specification see Tempora Logic



Formal Verification see Temporal Logic
TLA see Temporal Logic
Dictionary Terms.

Concurrency Mode

Model representing the globa dynamics of a system which consists of concurrently acting components. Mainly, there
are two types of concurrency models. Interleaving models induce a total temporal ordering of al component actions.
Thus, the system is assumed to perform a globa sequence of actions and the model reduces concurrency to non-
determinism. In contrast, partial-order models represent the temporal independence of concurrent events directly.
Concurrent events are not comparable with respect to the order of events.

Liveness Property

Property of a system concerning its dynamics and expressing that the system will eventually show a particular behavior
within a finite period of time. Together with safety properties (see Safety Property) liveness properties can be used to
characterize the principa functionality of distributed systems.

Safety Property

Property of a system concerning its dynamics and expressing that the system behavior never injures particular
conditions, e.g., never enters forbidden states. Together with liveness properties (see Liveness Property) safety
properties can be used to characterize the principal functionality of distributed systems.



