
Model-based Management of Embedded Service Systems – An Applied
Approach

Stefan Illner, Heiko Krumm,
Ingo Lück, Andre Pohl

University of Dortmund, Germany
{illner, krumm, pohl}@ls4.cs.uni-dortmund.de

ingo.lueck@materna.de

Andreas Bobek, Hendrik Bohn,
Frank Golatowski

University of Rostock, Germany
{andreas.bobek, hendrik.bohn,

frank.golatowski}@uni-rostock.de

Id: aina-uro-udo-complete.tex 126 2006-04-25 10:03:17Z pohl

Abstract

The automatic integration of devices into dynamic, auto-
matically configured networks alone does not take advan-
tage of the entire potential of Service Oriented Architec-
tures (SOA). Using service management, independent ser-
vices can be directed to perform meta tasks in a SOA net-
work.
In this paper we describe and evaluate the service manage-
ment toolMOBASEC, which consists of two parts: at sys-
tem runtime, management services are running in order to
enforce management policies. The second part of the tool is
a graphical model editor which supports the user in setting
up the desired management policies easily.
This research is part of the European SIRENA (Service
Infrastructure for Real-time Embedded Networked Applica-
tions). The use ofMOBASEC was evaluated by the project
in automotive application and the results are summarized
here.

1 Introduction

TheService Oriented Architecture (SOA)approach pro-
vides a standardized view to software components in a net-
work. These components – calledServices– are described
in a standardized format (Service Description) which is
used to integrate, announce, discover and use the func-
tionality they offer. Furthermore services can subscribe to
events generated by other services to get informed about
state changes. The implementation of the services is hidden
from the service users, which only make use of the provided
functionality using a well defined interface.

This research is part of theSIRENAproject [1]. SIRENA
was aimed at heterogeneous embedded devices interact-
ing inside and between four different domains (automotive,
telecommunication, industrial and home automation). Sev-

eral SOAs were evaluated such asUniversal Plug and Play
(UPnP), Web servicesor theOpen Services Gateway Initia-
tive (OSGi)for example. Due to interoperability and plat-
form independence it was decided to use UPnP and theDe-
vices Profile for Web Services (DPWS).

UPnP is a simple, easy-to-use SOA for small net-
works [2]. It supports ad-hoc networking of devices and
interaction of services by defining their announcement,
discovery and usage. The UPnP specification defines a
progamming language and platform independent technol-
ogy as only protocols and interfaces are specified. It divides
the device life cycle into six phases:Addressing, Discovery
and Description specify automatic integration of devices
and services,Control, Eventingand Presentationspecify
how to use them.

The Devices Profile for Web Services(DPWS) [3], an-
nounced in August 2004 and revised in May 2005, is a pro-
file identifying a core set of Web services that enables dy-
namic discovery of, and eventint capabilities for Web ser-
vices. It arranges several Web service specifications such
asWS-Addressing, WS-Discovery, WS-MetadataExchange,
and WS-Eventingfor devices, particularly. In contrast to
UPnP, it supports discovery and interoperability of Web ser-
vices beyond local networks. Temporarily DPWS was con-
sidered the successor of UPnP and thus subtitled with ”A
Proposal for UPnP 2.0 Device Architecture” in one of its
earlier versions. However, DPWS is not compatible with
UPnP.

The meaningful combination of heterogeneous services
– so calledService Orchestration– can be used to fulfill
meta tasks which stand-alone services could not achieve.
In the SIRENA project we dealt with the management of
distributed and loosely coupled service systems running on
embedded, networked devices. The mobile nature of these
devices lead to new management issues and the dynamic
configuration management adapting to changing environ-
mental conditions became one of our major goals. With
respect to the limited computing capabilities of embedded

1



devices, we developed a two-phase management approach
which splits up the management task into a design-time
and a runtime phase. At design-time we adhere to the
concepts of the model-based management approach to cre-
ate the management policies whilst at runtime a small and
lightweight set of management services is used to enforce
the created management policies.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the demonstrator which shows
the feasibility of the presented approach. Section 3 de-
scribes the components of the demonstrator and their func-
tionality in detail. The evaluation results are presented in
section 4, followed by a look on related work in section 5.
Finally a conclusion is drawn in section 6 including an out-
look to future research.

2 Architecture of the demonstrator

The presented demonstrator is part of the automotive
demonstrator of the SIRENA project showing new appli-
cations of a SOA in a car. The architecture of the presented
application is shown in figure 1. Its purpose is to turn off
an airbag whenever a child safety seat is placed on the front
seat to increase the safety of the child in the case of an ac-
cident. A UPnP network (on top of LAN and WLAN re-

Figure 1. Architecture of the demonstrator

spectively) is used to connect all devices except the child
safety seat which is connected via Bluetooth. The airbag is
represented by anAirbag Deviceand aBluetooth ID Scan-
ner is searching for Bluetooth IDs of children safety seats.
Both devices are independent from each other and only of-
fer their own services but do not interact with each other. A
third device MOBASEC-S Deviceembeds aManagement
Service. It is configured in such a way that it browses the

network to find Bluetooth ID scanners and airbag devices.
If a Bluetooth ID scanner is found the MOBASEC-S device
subscribes to the scanner using UPnP Eventing. Thereby it
gets informed about all Bluetooth IDs found by the scanner.
Whenever a Bluetooth ID is identified as a child safety seat
the airbag device is switched off using UPnP Control.

All components are described below in more detail.

3 Components

3.1 Bluetooth ID Scanner

When talking about loosely coupled devices and control-
ling them, future visions mostly end up in manual handling
the devices, e.g. by remote controllers or by desktop-based
applications. But there are a lot of scenarios requiring au-
tomatic invocation of services. As an example: Consider-
ing an air conditioner which should be regulated according
to current temperature and time. A scheduler might be set
up which defines different temperatures for different condi-
tions. Manual regulations are not sufficient. We used the
MOBASEC tool to model such situations. Conditions may
consist of state information of other devices, localization,
resource, and time information, or more generally spoken
of context information. To solve the localization (identifica-
tion) problem in our scenario, we used a Bluetooth-enabled
scanning device.

Bluetooth[4] is a well-known wireless technology, actu-
ally established as a cable-replacement for home and office
computational devices and applications, mainly. Its short-
range radio is operating in the ISM-band at 2.4 GHz. The
Bluetooth specification also defines theHost Controller In-
terface (HCI)that acts as a uniform interface to the Blue-
tooth firmware. Via HCI, it is possible to search for other
Bluetooth devices and services. Each Bluetooth device is
equipped with a world-wide unique device ID consisting of
a six byte number similar to MAC addresses of network in-
terface cards. Device IDs along with the inquiry process
make identification of devices possible. For our purpose we
developed a scanning device which inquires other Bluetooth
devices permanently. Since inquiry responses are only sent
by devices in range, we are able discover devices near to the
scanning device.

For our implementation we chose theFOX boardavail-
able at [5]. FOX is a very small (66 x 72 mm, or
2.6 x 2.8 inches) hardware platform and can be used as an
embedded system. It is equipped with a 100 MHz RISC
CPU, one Ethernet and two USB ports and runs a special
Linux distribution including services like a web, FTP or
TELNET server. To enhance the system with UPnP and
Bluetooth capabilities we connected the board with a Blue-
tooth USB dongle and an Ethernet cable.

2



The Bluetooth software component was implemented on
top ofBlueZ[6]. The C-based BlueZ API is a complete im-
plementation of the Bluetooth stack for Linux systems. In-
quiry commands are sent periodically and responses are col-
lected. We wrapped the Bluetooth application as an UPnP
service. For that purpose, an UPnP device was generated
using the Intel UPnP stack [7].

3.2 Management

The two major parts of our two-phase management
framework will be outlined in more detail in the following
sections.

3.2.1 Model-based Management & MOBASEC

The model-based management approach uses an object-
oriented model of the managed system to ease the creation
and modeling of complex management policies. The graph-
based modeling of such a system is supported by a graph-
ical modeling tool. Common policy-based management
approaches [8] apply low level policies to describe man-
agement demands. Systems applying the model-based ap-
proach [9] use abstract high-level policies from which con-
crete service configurations are automatically created.

The refinement process for policies uses the concept of a
policy hierarchy[10] which divides the model into different
layers of abstraction (cf. figure 2). On the topmost layer
the model contains a very abstract description of the man-
agement objectives. On the way down to the bottom layer
the model gets more and more concrete by (semi-)automatic
and manual refinement of the model elements. The bottom
layer finally contains a low-level policy model which, for
example, can be transformed to XML-coded service config-
uration descriptions. The modeling of policies is supported
by our MOBASEC modeling tool.

Figure 2. Model diversion overview

Besides the horizontal diversion into different abstrac-
tion layers, the model can be moreover split into four verti-
cal parts (cf. figure 2):

System The system model contains all the real-world en-
tities of the system to be managed. These include the
devices and network connections or services with their
actions and attributes, for example.

Control Services This part of the model contains a collec-
tion of services which are responsible for the runtime
management of the modeled system. This includes the
services for service monitoring, configuration and se-
curity management.

Management Policy The policy part of the model contains
the description of the management actions to be ap-
plied to the system. For example, this part contains
the structures for setting service attributes to specific
values or calling a service’s action with a particular
parameter list.

Environment The environment section of the model con-
tains the definition of the important environmental sit-
uations the system may be exposed to. These situations
are directly related to particular parts of the manage-
ment policy section.

For the modeling of the environment we adopted the no-
tion of Environment Rolesfrom theGeneralized Role Based
Access Control (GRBAC)[11] approach. GRBAC is an ex-
tension to the well knownRole Based Access Control[12]
model. Naturally being used for the creation of environment
aware access control policies, we use environment roles as
abstract representatives for environments on the topmost
layer of our common management model. On the lower lev-
els these roles are replaced by so calledenvironment condi-
tionswhich are logical expressions overenvironment condi-
tion elements. The elements can be used to interpret avail-
able sensor or service monitoring data. This concept en-
ables us to model arbitrary environmental conditions based
on the evaluation of simple data structures.

The information about which types of elements are avail-
able for modeling and how these can be connected to each
other is encoded in the so calledmeta-model. The meta-
model contains domain specific graph-node implementa-
tions, normally in form of Java classes. Each of these
classes subsumes the associated behavior and properties of
the real-world or policy entity represented by a model node.
Moreover the meta-model contains the functions to create
low-level configurations for the services that are responsi-
ble for the runtime enforcement of the modeled policies.

The models are created using our MOBASEC modeling
tool for ”Model-BasedService Configuration”. The tool

3



itself provides a modeling platform which includes a graph-
ical user interface, graph-modeling and -transformation ca-
pabilities and filtering functions. Moreover it is possible to
define different views on a model to enable a differentiated
view on even very complex models. All other information
regarding the modeling process is provided by domain spe-
cific meta-models.

Figure 3. MOBASEC screen-shot

The graph transformation algorithms [14] that are part
of the MOBASEC platform are used for automated model
refinement. The idea of this is as follows: as stated above,
the model is described by a graph. Therefore it is possi-
ble to define a graph transformation system consisting of
single transformation rules which alter the graph in a spec-
ified way. One such rule consists of a pre-patternL and a
post-patternR, and on detection of aL in the model, this
occurrence is replaced with an instance ofR, after ensuring
that this step will not violate any connectivity restrictions of
the affected nodes.L andR are graphs also, consisting of
elements of the same meta-model as the model graph does.
The rule elements can be specified using the tool in the same
way the model is specified. Some nodes inL are identified
with nodes inR, while others are not. The same applies
to the edges inL andR. The algorithm to apply a ruler
to a model graphM is roughly outlined by the following
sequence:

1. Find an occurrence ofL in M

2. Remove all components inM which occur inL, but
do not have an identity component inR

3. Insert all components intoM which occur inR, but
do not have an identity component inL

The application of a ruler transforms the graphG to a
GraphG′, denoted byG ⇒ G′. This is called a direct
derivation, andG′ is directly derived fromG. For a bet-
ter control over the application of a rule, every rule is aug-
mented with two additional components. Acondition al-
lows to specify certain constraints which must be met by the
detected subgraphL′ in order to match the defined pattern
in the search. These constraints can refer to all attribute val-
ues of elements inL′. An effect functionis a function which
is applied to the inserted graph elements, and describes how
the attribute values of the inserted elements are computed
from the attributes of the elements ofG.

The model created for the demonstrator to provide the
(de)-activation of the airbag in the car based on the pres-
ence of the child safety seat is depicted in figure 4. On the
left hand side of the model you can see the modeledAirbag
Serviceand theBlueScan Servicefor scanning Bluetooth
IDs. The Airbag service offers an action calledSetEnabled,
with the boolean parameterMode. The BlueScan service
has only one single service attribute calledDiscoveredIDs
which contains the IDs of the currently present Bluetooth
devices. This attribute can be accessed via an eventing
mechanism. The services are hosted by theAirbag and re-
spectively theBluescandevice. Right next to the services,
five management services are modeled, running on the de-
vice calledAWebS. All devices are connected by aNetwork
Link which has to provide IP connectivity to enable the ser-
vices to communicate.

In the policy section of the model, the management goals
and their resulting tasks are modeled. On the topmost layer
a management goal namedAirbag-Child Safety Seat Con-
trol is modeled. This abstract goal is refined to the manage-
ment tasks modeled on the middle layer. The lower task
enables the airbag by calling theSetEnabledaction with
the value forModeset totrue, while the other task disables
the airbag by settingModeto false. Management tasks are
grouped together using so calledfolder nodes, which can be
opened or collapsed to improve the readability of a model.
On the right hand side of the model you can see the environ-
ments for our demonstrator scenario. On the upper layer the
environments are represented by very abstract environment
roles calledChild Seat insertedand Child Seat removed.
These roles are refined to appropriate environment condi-
tions which define what sensor data should be used to de-
termine a special environment and how this data should be
interpreted. TheSeat removedenvironment condition con-
tains the definition for the situation when the child safety
seat is not present. This environment is active, whenever
the DiscoveredIDsattribute of theBlueScanservice does
not contain the Bluetooth ID of the child safety seat. The
management tasks are connected to the appropriate envi-

4



ronment condition elements.

Figure 4. Airbag control model

From models like the one depicted in figure 4 the low-
level XML policy descriptions can be created. For these
descriptions we developed an XML Schema document that
defines the structure and elements of the configuration de-
scription. The configuration description is action centric,
that means all management tasks are encoded as actions of
services and whenever a configuration change has to take
place, this change is defined as an action call on the affected
target service. This very flexible concept allows us to define
the configuration of the management services and managed
services the same way.

A short example of the XML structure is outlined below:

<config version="v1" ...>
<serviceConfigurations>

<service type="ServiceType" ...>
<action name="ActionName" ...>

<parameter name="ParameterName" ...>
<value>...</value>
</parameter>
...

</service>
...

</serviceConfigurations>
</config>

3.2.2 Policy Enforcement

So far we have outlined the modeling of management poli-
cies by means of graphical modeling and model refinement
using the MOBASEC tool. The automated creation of the
low level policies concludes the design phase of the man-
agement process. At runtime, a set of dedicated services
is used to enforce the given policies and to enable the adap-
tive runtime management of the system. The provided infra-
structure consists of five different services, each responsible
for a special subtask of our runtime enforcement process.
TheDeployment Serviceis responsible for the initialization

of the service infrastructure. TheMonitoring Servicesub-
sumes all functionality for the runtime monitoring of ser-
vices by using polling or eventing mechanisms. The activa-
tion state of the environment elements is managed by the
Environment Element Activation Service. The Automatic
Adaptation/Dynamic Reconfiguration Service (AADR)de-
tects the environmental situation a system is exposed to, and
finally the Service Control Management Serviceactivates
the appropriate configuration for a particular environment.
The service infrastructure is also depicted in figure 5.

Figure 5. Runtime service infrastructure

The low-level configuration derived from the model can
be directly deployed onto an existing management service
infrastructure from within the MOBASEC tool. As soon as
a new configuration arrives, the Deployment Service splits
up the configuration data and forwards the appropriate con-
figuration parts to the other management services. After
the initialization phase the services are ready to enforce
the given management policy. This process is as follows:
the Monitoring Service gathers information about the cur-
rent system environment by listening for incoming events
or polling appropriate service actions. As soon as a change
in the environment is detected, the name of the sensor el-
ement and the current value are forwarded to the Environ-
ment Element Activation Service. This service reevaluates
the state of all environment condition elements that depend
on the given sensor element. If this evaluation leads to a
change in the set of active elements, this set is sent to the
AADR. This service now starts an evaluation of the config-
ured environment conditions which are encoded by means
of logical formulas. If an environment condition is found
to be active, and it was not active before, the AADR re-
solves the identifier of the associated configuration set and

5



sends a message containing this identifier to the Service
Control Management Service. A single configuration set
contains all service configuration descriptions that are as-
sociated with a particular environment condition. Finally
the Service Control Management Service loads the appro-
priate configuration and performs the enclosed management
actions.

Service Implementation The service infrastructure intro-
duced in the last paragraph was implemented using the Java
programming language. Before implementing the services
we developed an abstraction layer for service oriented archi-
tectures that hides the specific low-level implementation of
UPnP or DPWS from the services implementations. Thus
for porting the services to the DPWS platform we only have
to implement a new communication module for the abstrac-
tion layer, while the services above the abstraction layer
remain unchanged. The footprint of our implementation’s
compressed byte code is about 420kB with≈ 80kB for the
services implementations,≈ 35kB for the abstraction layer,
and about 300kB for the UPnP libraries.

4 Evaluation

The application and management services described in
the last section where used to implement the automotive and
cross-domain demonstrators from section 2. After the ini-
tial deployment and startup of all involved components, the
management services where initialized with the configura-
tion created from the above-mentioned model of the demon-
strator scenarios. This initialization phase started with the
online-deploymentof the actual configuration from within
the MOBASEC tool. The initialization phase took about
30 secs. from starting the deployment in MOBASEC until
the service system was in an completely initialized state.

As the child safety seat was installed in the car, it was
recognized and the management services enforced the mod-
eled configuration change and thus set the airbags statevir-
tually to off. After the seat had been removed, the airbag
was reactivated again. The management system’s response
time was about 700 msecs. from monitoring a change of a
sensor state to the enforcement of the new configuration at
the airbag service.

The demonstrator showed that our management ap-
proach was applicable for the management of (UPnP) ser-
vice systems. The airbag and bluetooth scanner services
were combined together without having to implement any
additional line of source code, just by creating a model
of the managed system and instrumenting the management
runtime service infrastructure. We also used our approach
to create a personalisation service inside a car using the on-
board AWebS box and a PDA.

5 Related Work

In [13] Lobo et al. describe a platform called ”Policy
Management for Autonomic Computing” (PMAC). Based
on an extensive policy language, management policies can
be created using a so calledPolicy Definition Tool. During a
policy ratification process the available policies are checked
for dominance or conflict issues. The policies are used by
anAutonomic Managerfor the automated runtime manage-
ment of managed resources. The main difference to the ap-
proach presented in this paper is that PMAC indeed uses
a policy definition tool to support the user in creating the
management policies but does not apply the model-based
management approach to create management models.

6 Conclusion & Outlook

The implementation of the demonstrators showed the ap-
plicability of the management approach that was developed
during the SIRENA project. Therefore our future work will
concentrate on the improvement of the meta-model and re-
finement rules to make the policy creation process much
more friendly. This includes the evaluation of so called
Management Patterns. These patterns can be seen as a tool-
box of refinement patterns that are able to deal with man-
agement issues that may arise in domains based on service
oriented architectures. Moreover the implementation of a
small DPWS stack for Java and its integration into the ab-
straction layer the management services are based on is an-
other task we are currently working on. Finally we have to
conduct more tests in complex service management scena-
rios to confirm our initial results.

This work was supported by the SIRENA project in the
framework of the European premier cooperative R&D pro-
gram ”ITEA”.

References

[1] SIRENA (Service Infrastructure for Real-time
Embedded Networked Applications), http:
//www.sirena-itea.org , 2004.

[2] UPnP Forum, UPnP Device Architecture v.1.0.1,http:
//www.upnp.org/resources/documents.asp ,
2003.

[3] Microsoft, Devices Profile for Web Services,
http://specs.xmlsoap.org/ws/2005/05/
devprof/devicesprofile.pdf , 2005.

[4] The Bluetooth Special Interest Group, Specification of the
Bluetooth System 1.2, 2004.

[5] ACME Systems, FOX BOARD a complete Linux system on
a small board,http://www.acmesystems.it/?id=
4, 2005.

6



[6] BlueZ, Official Linux Bluetooth protocol stack,http://
www.bluez.org/ , 2005.

[7] Intel, Intel Software for UPnP Technology,
http://www.intel.com/cd/ids/developer/
asmo-na/eng/downloads/upnp/index.htm ,
2005.

[8] M. Sloman, Policy Driven Management for Distributed Sys-
tems,Journal of Network and Systems Management, 2(4),
1994.

[9] Ingo Lück, Sebastian V̈ogel and Heiko Krumm, Model-
based configuration of VPNs,8th IEEE/IFIP Network Op-
erations and Management Symposium (NOMS), Florence,
Italy, 2002, 589–602.

[10] Reńe Wies, Using a Classification of Management Policies
for Policy Specification and Policy Transformation,Proc. of
the IFIP/IEEE International Symposium on Integrated Net-
work Management, Santa Barbara, California, USA, May
1995.

[11] Matthew J. Moyer and Mustaque Ahamad, Generalized
Role-Based Access Control,Proc. 21st Int. Conf. on Dis-
tributed Computing Systems, Mesa, USA, 2001, 391–398.

[12] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein and
Charles E. Youman, Role-Based Access Control Models,
IEEE Computer, 29(2), 1996, 38–47.

[13] Dakshi Agrawal, Kang-Won Lee, Jorge Lobo, Policy-Based
Management of Networked Computing Systems,IEEE
Communications Magazine, vol. 43, no. 10, October 2005.

[14] M. Andries et. al.,“Graph Transformation for Specification
and Programming”,Science of Computer Programming,
Vol. 34, pp. 1–54, 1999.

7


