
Model-driven Security Management of Embedded
Service Systems

Stefan Illner, Andre Pohl, and Heiko Krumm

University of Dortmund
Dept. of Computer Sciences, Chair IV

August-Schmidt-Straße 12, 44227 Dortmund, Germany
{stefan.illner, andre.pohl, heiko.krumm}@udo.edu

http://ls4-www.cs.uni-dortmund.de/RVS/

Id: udo-iecon2005.tex 72 2005-07-05 08:48:17Z pohl

Abstract—The paradigm of Service Oriented Architectures
spreads throughout the domain of business software and en-
terprise networks. With the proposal of the Device Profile
for Web-Services also small, less powerful embedded devices
should be able to interact with services of the network in-
frastructure they are connected to. New challenges arise
when it comes to the adaptive management of these de-
vices. The available computing power is often too low to
allow extensive runtime evaluations for automatic adapta-
tion to new situations. Moreover when thinking of large
scaled device networks the creation and management of se-
curity policies may become a complex task. In this paper
we address the latter by splitting the security management
task into a design-time and run-time task. At design-time
the considered access control policy is graphically modeled
applying the concepts of Role Based Access Control and the
definition is aided by a modeling tool. At run-time the con-
figurations created by this tool are the basis for the access
control computations of a security service infrastructure.

Keywords— model-based management, access control, em-
bedded service systems, GRBAC, automated management

I. Introduction

Currently not only business software is increasingly
adopting the paradigms of service-oriented architectures
(SOA) in order to support flexibly cooperating applica-
tion systems, but also embedded real-time systems start
to profit from that approach. As pointed out in [1], adapt-
ability, reconfigurability and cooperation issues plead for
an open, flexible and agile environment with ”plug-and-
play” connectivity as it is supported by service-oriented
architectures. The SIRENA-project [2] successfully demon-
strated that even the Web-Service interface paradigm can
be adapted to embedded devices by means of the Device
Profile for Web-Services (DPWS). Nevertheless, the flexi-
bility and adaptation potential of SOA-based systems can
only be exploited under integration of automated techni-
cal management and administration functions. However,
possible solutions are faced with the memory and proces-
sor restrictions of the embedded devices. Consequently,
on one hand subtle management functions are necessary
which have to be designed under careful consideration of
the special objectives and conditions present in the given
system environment, and on the other hand the manage-
ment functions can not rely on complex self-management
run-time processes.

Our approach therefore aims to a light-weight, but func-
tionally powerful run-time management. For that purpose

it concentrates on a sophisticated design-phase which an-
ticipates and analyzes all crucial run-time situations, eval-
uates them with respect to the existing management poli-
cies, and finally accomplishes the design of suitable and
efficiently implementable run-time management functions.
Due to the central role of the design-phase, we have to
provide special support for the system identification, pol-
icy definition, automated system analysis and policy refine-
ment in order to facilitate these demanding tasks and to
ensure the quality of their results. The support is based
on an adaptation of the model-driven approach to the do-
main of technical management system design, the so-called
model-based management (MBM) [3], and on the provi-
sion of a corresponding modeling and design tool, the tool
MoBaSeC.

MoBaSeC basically is a graphical modeling tool which
supports the interactive development of object instance
models by means of graphical representations, i.e. by means
of object instance diagrams. The tool is accompanied by
two kinds of libraries. First, class libraries correspond to
domain-specific meta-models and supply predefined classes
for the object instances of models. Thus, a modeler chooses
a suitable meta-model and then can focus on the task of
representing the embedded service system of interest by
means of object and association instances. The classes con-
tain operations which are executed by the tool and perform
automated model checks and system analysis. Second, the
class libraries are accompanied by rewrite system libraries.
They represent graph rewriting systems [4] and consist of
rule sets. Each graph rewrite rule is defined by two graph
patterns, a pre-pattern and a post-pattern. Wherever the
pre-pattern applies to a subgraph of the model, the rule can
be applied by modifying the model in accordance with the
post-pattern. The supplied rewrite system libraries corre-
spond to management policy refinements [5]. They are used
to translate the modeled abstract management policies into
suitable configurations of enforcing run-time management
functions, i.e., the graph rewriting enriches a given model
by introducing management and security components and
configuration data.

In section II, we detail the overall structure of the model
in use. Afterwards, section III depicts the elements which
are used in modeling environment conditions and security
issues, and the relationship between these elements. It is
followed by the explanation of the services providing secu-

1

rity related functionality and their interactions in section
IV. An illustrative example is presented in section V. The
explanation of the graph transformation process, by which
configuration information is created automatically, follows
in section VI. Section VII gives a short overview of related
work, and section VIII rounds off this work.

II. Model structure

Common policy-based management approaches apply
low level policies to describe management demands. In
comparison to that, model-based management [6] uses very
high-level policies to describe the desired behavior. Due
to the utilization of a system model, the low-level policies
and concrete service configurations can automatically be
created by the tool. Basically a model is build up of some
common and application domain specific model nodes like
“Service” or “Device”, and edges connecting these nodes.
Each connection between two nodes expresses a specific
dependency or relationship between these nodes. In com-
mon the model is divided into different abstraction layers
ranging from a very abstract enterprise view, including the
high-level policies to be enforced, to low-level system ele-
ments like specific hosts, devices, network protocol stacks
and configurations.

The model contains three abstraction layers as shown in
Fig. 1. Namely these are the Roles & Goals layer which
contains the most abstract enterprise view, the Services &
Configurations layer which deals with the services and ab-
stract configuration relations between the services, and last
the less abstract Devices & File layer containing the hard-
ware devices, which are hosting the services, real world user
credentials and the XML configurations describing the low-
level management policies in form of service configuration-
descriptions.

The vertical adjustment divides the model into the Sys-
tem, Control, Policy, and Environment sections. The Sys-
tem section contains all model elements which represent
parts of the real world managed system, e.g. application
services like a file- or mail-server, hosting devices, users
and associated credentials. The Control section contains
the required policy enforcement services such as the man-
agement and security infrastructure services and devices
which host these services. It does not contain elements
on the upper layer, as the policy enforcing components are
not visible above the Services & Configurations layer. Man-
agement and security goals are modeled using specific pol-
icy objects. These are arranged in the Policy section of
the model and are refined in the lower layers. The most
right Environment column contains the objects required to
model the environmental awareness of given management
policies.

Based on this comprehensive model, our tool is able to
automatically create low-level policies from the modeled
high-level policies.

III. RBAC & GRBAC

This section introduces the concepts of Role Based Ac-
cess Control and Generalized Role Based Access Control.
We use the GRBAC model to facilitate the modeling of

System C o n tr o l P o l i c y E n v i r o n men t

R o l es
&

G o a l s

Ser v i c es
&

C o n f i g s

D ev i c es
&

F i l es

��� ��� � � � �

	
��� � � ��� � � �

���� ��������� ������
��� � ��� � � � ���

	���� � � �
��� � ��� � � � ���

�! " "

�#��$

%
��� &
')(�� &��

���
������

�
� �
*����
�
��� + � 	
� � � � �

*,� ���
��� + �

- &�.���� / 0
- &�� 1� . &

2 3 4 � (�� / � ��. / ��� &

*,� � + ��� � � ��5

*,� � + ��� � � ��5
*,� ��+ ��� � � ��5 %!&�1� . & %�&�1� . &

6�� �

')(� 3 / &�3�(�3�. &
- " ��/ �

Fig. 1. Model Overview

environment-aware policies as these are required for our
automatic security adaptation approach.

The RBAC [7] approach uses roles instead of a per user
access control policy to model access permissions. These
roles reflect the structure of an organization and carry spe-
cific access rights. Users or applications acting on behalf
of a user are referred to as subjects in the RBAC termi-
nology. Subjects are assigned a set of authorized roles, i.e.
each subject can only act in a role that is defined in this set.
In addition the RBAC model defines so called objects and
operations. Objects are the entities protected by an RBAC
system, e.g. services or files. Operations describe sequences
of accesses of subjects acting in specific roles to RBAC
objects. A formal definition of the RBAC model follows:

Subject S a user representation in the system
Role R a categorization primitive for subjects
Object O a system resource
Operation T a sequence of one or more accesses to

one or more objects
AR(S) the authorized role set for subject S
AT(R) the authorized operation set for Role R
exec(S, T) true iff subject S is authorized to exe-

cute operation T ;
true iff ∃ role R : R ∈ AR(S), T ∈
AT (R)

Based on the active set of subject roles, the operation and
the associated object a system based on the RBAC model
decides whether or not the access should be granted.

As we deal with a service oriented architecture, elements
of type object will not show up in our models because they
are completely encapsulated by services and are accessed
only internally by the services.

Role inheritance can be utilized when hierarchic struc-
tures of access rights are existing. A role R′ can extend
another role R, meaning that every member of R is also a
member of R′.

The Generalized Role Based Access Control model [8]
extends the RBAC model outlined above by adding two
more types of roles: object- and environment-roles. Object-
roles are intended to model the type or internal state of an
RBAC object. They are unused in the current modeling for
the aforementioned reason. Environment-roles are used to

2

model the environment of an application. This can be the
time of day or the weight of the subject trying to access a
specific object. Due to the addition of two more roles, the
decision process to determine whether or not an operation
should be allowed is more complicated. This process is as
follows:

1. It is checked, if there exists an object-roleRO of object
O, and

2. an environment-role RE which is active at the mo-
ment, and

3. an operation T which is allowed for a subject-role RS
to access an object O in the role RO while the role RE of
the environment is active.

Accessing an object is then replaced by performing a
service call.

The upper layer in Fig. 1 exemplifies the application of
the RBAC/GRBAC approach for the modeling of high-
level policies.

The Subject Roles (e.g. Operator, Maintainer) are used
as a grouping mechanism for users. A user is assigned
membership in a particular subject role by connecting her
to the role element. Role inheritance is expressed by di-
rected edges between subject role nodes. Subject Types are
used to be able to distinct clearly between the set of au-
thorized roles and the set of roles currently occupied by
a subject. As subject role membership is used in access
control, there must be a Credential allowing the user to
authenticate herself as member of a subject role. There
are several types of credentials, e.g. passwords and X.509
certificates. A credential must have exactly one connection
to each of subject type and user. This way, a user can have
several credentials, associated with different sets of subject
roles.

An Access (e.g. Operator or Maintainer Commands) el-
ement can be connected to concrete services and to actions
of concrete services. With this construction, actions from
several services can be grouped together easily in order to
assign common access rights for them. When a connection
between a concrete service element and an abstract service
element is established, this means that all actions from the
concrete service become assigned to the access.

The Environment Roles are abstract representatives for
environmental situations (e.g. Work hours, Maintenance
slots). The roles are refined to Environment Condition el-
ements which describe the desired environmental situation
in more detail using boolean expressions with environment
condition elements (e.g. time slot definitions) connected to
and, or, and not elements.

Connecting an environment role to a subject role has
the meaning that members of this role can act as such only
when the environment condition evaluates to true.

A Permission (e.g. Operator or Maintainer Permission)
is the link between accesses and roles. This expresses the
fact that every user being currently in at least one of the
connected roles, is allowed to execute any of the actions the
access element is connected to. Optionally an environment
condition can be connected to a permission, implying that
this permission element is used only for access computation
when the environment condition evaluates to true.

IV. Runtime Enforcement

So far we have outlined the representation of abstract
access control policies by means of graphical modeling us-
ing the MoBaSeC tool. The automated creation of the
low level policies concludes the design phase of the secu-
rity management process. At runtime, the infrastructure
of dedicated security services provides for the enforcement
of the created policies.

A. Data Structures

An XML-encoded low level policy contains several dif-
ferent data structures which reflect the high level elements
from the graphical model. The main data structures used
by the security services are the ACL, the ACLEntry and Role

elements. An ACL is a simple list of ACLEntry elements and
an additional version attribute which changes whenever
the ACL or any contained sub element is altered:

<Acl version="0xf45eb3ab">
<AclEntry />
...

</Acl>

An ACLEntry element contains several sub elements. The
Permission element contains information about which re-
source is handled by this entry and if this permission is a
positive one (grants access) or negative one (denies access).
The Validity element can be used to define time related
constraints for an ACLEntry. These time constraints are
expressed through NotValidBefore and NotValidAfter

elements. The EnvCondition element contains a logical
structure over environment condition elements and defines
the environmental state when the ACLEntry is valid. Fi-
nally the subject addressed by the entry can be specified
using two different ways. On the one hand a Subject re-
ferred to by its public key hash may be listed explicitly in
the entry. On the other hand a RoleIdSet containing the
identifiers of the required subject roles can be supplied.

<AclEntry id="0x45af20e">
<Permission />
<Validity />
<EnvCondition />
<Subject /> | <RoleIdSet />

</AclEntry>

The EnvCondition elements are used beyond the security
management domain also in the area of the automated
management of other FCAPS areas. Each EnvCondition

defines a logical expression over environment condition
elements which describe represent low level environment
data. The logical expression may include the logical op-
erators and, or and not, connecting ElementId elements
which contain the references to the environment condi-
tion elements defined somewhere else. In addition each
EnvCondition element contains an id attribute which de-
fines a unique identifier for each EnvCondition.

<EnvCondition id="0x1234567">
<or>

<and>
<not>
<ElementId />

</not>
<ElementId />

3

S

798;:
< =;>@?BADC�E =
F >G?�H IKJK?�H C�L

F 8M?�NMC�O�H PKJK?�H CQL

F9RTS
U JQLKJ;VW=�XY=QL)?

Z\[=�O]�A\C�E =
U J�L)J;VW=�XY=QL)?

^G_!`Ga bBc�`�d e f#`
c
g
h#h,`�i,ikj�lGm e h�bn�`�o�gG_#o p!lGa e q!`�c

i�_�r�s `�h�o@a l�m `
i

t

t

h�p#`�h!uvg
h�o e w!`
i
_
r�s `�h�o@a l�m `�i

g�_#o p�l�a e q
g!o e l�f
a `�^G_#`�i,o

^@_!`Ga b
`@f,w�e a l�f
xy`Gf,oMa l�m `�i

^@_#`Ga b
`@f,w�e a l�f
xy`Gf#o@a l�m `�i

t

Fig. 2. Security Services

...
</and>
<ElementId />
...

</or>
</EnvCondition>

A Role element defines a subject role used in a security con-
text. Each role contains a RoleId element which defines a
unique role identifier and can be used to refer to a particu-
lar subject role. In common this id consists of a describing
name for a role, i.e. MyDomain.BackupAdmin. Addition-
ally each role may contain an optional MaxCardinality

element, which defines the maximum number of subjects
that may act in the same role at the same time. Finally
each role may contain an EnvCondition element which can
be used to define special environmental premises that con-
straint the activation state of a subject role.

<Role>
<RoleId />
<MaxCardinality />
<EnvironmentCondition />

</Role>

B. Security Services

The infrastructure presented here is based on four ser-
vices which cooperate with each other to compute reliable
access control decisions based on the prior defined access
control policy. Fig. 2 depicts these services and their in-
teraction. This infrastructure is designed to work in tight
conjunction with the common management services infras-
tructure we already presented in [9], [10].

Each service that requires access control may forward an
incoming request to the Authorization Service. The pro-
vided information includes the URL of the action that was
called and the hash of the public key the calling user pre-
sented to the service. The authorization service now sends
a query consisting of the service action URL to the ACL
Management Service which stores the access control lists.
All ACL entries are bound to complete services or spe-
cific service actions. If there exists an entry matching the
given action URL, this entry is returned to the authoriza-
tion service. As an ACL entry’s validity can be bound to

a simple time constraint, this constraint is checked first.
All entries that do not pass this validity check are not fur-
ther processed. In the second step the authorization service
queries the User/Role Management Service for the set of
authorized roles for the calling user. This set is checked
against the required roles specified in the ACL entry and if
a required role is missing, the authorization service drops
this entry and continues with the next one, if available.
Finally the validity of the entries concerning special en-
vironment conditions is checked. To accomplish this task
the authorization service sends a query to an associated
environment role activation service to check whether the
involved roles are active or inactive. If the environment
condition finally evaluates to false the processing of this
particular ACL entry is aborted, continuing with the next
entry, if available. In the case that no valid entry is avail-
able at last a negative access decision is returned and the
called service should reject the user’s request.

In the other case the authorization service now has a
list of valid ACL entries, each containing a set of required
roles. Now the authorization service queries the Subject
Role Activation Service to get the set of active subject roles
the user is acting in. As a subject role itself may also
be constrained by additional environment conditions the
subject role activation service also queries the environment
role activation service to determine the activation state of
the subject roles. The set of active roles is returned to the
authorization service which in turn relates these to the ones
defined in the ACL entries until an entry explicitly allows
or denies an access or there are no entries left.

V. Example

The model presented in Fig. 3 was created with our mod-
eling tool. It describes the situation that we encounter a
dose-maker device offering a service which in turn has three
actions. The MakeDose action is the dedicated operation
of the dose-maker. As such, all operators of the owning
company are allowed to invoke this action, but unautho-
rized employees, e.g. members of the accounting depart-
ment, are not. The permission is restricted and extends to
the working hours only.

The other two actions, ManualOpenTrap and Configure

Dose, may only be invoked by higher-skilled maintenance
personnel. Assigning authorization is always done connect-
ing roles and accesses to permission nodes. In this example,
the maintenance access consists of the two maintenance ac-
tions only. The permission to use these actions is granted
to all members of the maintainer role, but only during pre-
defined maintenance slots in order not to interrupt the reg-
ular operation of the machine.

Besides the node and edge classes required to create
a specific system model, the meta-model contains special
backend functions. These functions are automatically de-
tected by the tool and made accessible via corresponding
menu entries. Amongst these functions are those responsi-
ble for generating XML-based configuration files, and fur-
thermore functions for detecting semantic errors which can
not be detected during the modeling process.

For example the checking functions of the SIRENA meta-

4

Fig. 3. Example model with access control

model include an algorithm, which checks the environment
condition elements for contradictions. For the logical and
nodes, all condition elements attached to this node are
checked for their range and so it can be detected whether
this condition is either always true or always false. As
this will be seldom done by intention, a warning message
is presented to the modeler who can then alter the model
to a correct form.

VI. Graph transformation

We employ the graph transformation approach [11] in
our modeling tool for automated model enhancement. The
idea of this is as follows: As stated above, the model is
described by a graph. Therefore it is possible to define a
graph transformation system consisting of single transfor-
mation rules which alter the graph in a specified way. One
such rule consists of a pre-pattern L and a post-pattern R,
and on detection of a L in the model, this occurrence is re-
placed with an instance of R, after ensuring that this step
will not violate any connectivity restrictions of the affected
nodes. L and R are graphs also, consisting of elements
of the same meta-model as the model graph does. The
rule elements can be specified using the tool in the same
way the model is specified. Some nodes in L are identified
with nodes in R, while others are not. The same applies
to the edges in L and R. The algorithm to apply a rule r
to a model graph M is roughly outlined by the following
sequence:

1. Find an occurrence of L in M
2. Remove all components in M which occur in L, but

do not have an identity component in R
3. Insert all components into M which occur in R, but

do not have an identity component in L
The application of a rule r transforms the graph G to a
Graph G′, denoted by G ⇒ G′. This is called a direct
derivation, and G′ is directly derived from G. For a better
control over the application of a rule, every rule is aug-
mented with two additional components. A condition al-
lows to specify certain constraints which must be met by

the detected subgraph L′ in order to match the defined
pattern in the search. These constraints can refer to all
attribute values of elements in L′. An effect function is a
function which is applied to the inserted graph elements,
and describes how the attribute values of the inserted ele-
ments are computed from the attributes of the elements of
G.

If inheritance is used in the meta-model, a rule can be
made more general or more specific as needed, by using
either base classes or derived classes in a rule. In order to
avoid infinite recursion or other unwanted transformations,
it is possible to mark pre-pattern elements as inhibiting,
meaning that these elements must not appear in the model
for the pre-pattern to match.

Applying a rule r to a Graph G several times will result
in a transformation sequence G ⇒ G1 ⇒ . . . ⇒ Gn. The
result of several rule applications is called derivation, and
Gn is derived from G.

Usually, there will not be a single rule r, but a set P of
rules, where each rule serves a specific purpose. The set P
is called a graph transformation system.

(a) A rule

(b) and its effect

Fig. 4. Graph Transformation

Fig. 4(a) shows a pre-pattern on the left and a post-
pattern on the right side. The visual appearance of the
credential and its connections in the pre-pattern indicates
that the elements are set to inhibiting state, so that the
given rule will be only applied when a user does not yet
have a credential for one of her subject roles. Repeatedly
applying this rule ensures that every user has a credential
for every role to which she belongs, as can be seen in fig.
4(b).

The graph transformation also has another valuable ben-
efit for model checking. It is possible to specify certain
graph patterns that are allowed for the left-hand side of a
rule. For each pattern it is specified whether such a pat-
tern is mandatory or forbidden. If a mandatory pattern is
given, but no matching sub-graph is found in the model,
the model is invalid. A model is also invalid, if any of the
forbidden patterns is detected in the model graph. This

5

allows the detection of semantic errors, which cannot be
caught by the static analysis of the connection restrictions
defined in the meta-model.

VII. Related Work

Jammes and Smit discuss the integration of SOA
paradigms into the sector of the industrial automation
in [1]. Their assumptions are based on the observation
that emergence of powerful, networked embedded devices
enables the use of higher-level communication paradigms
adopted from standardized open protocol standards. This
may lead to a seamless integration of device and enterprise
networks.

In the area of policy creation and handling Moffett and
Sloman [12] introduce the concept of a policy hierarchy by
creating special low-level policies by refinement of general
high-level policies.

Porto et al. [13] propose an approach extending the mod-
eling concepts of MBM. They try to ease the creation of
complex security management policies by adding an addi-
tional level of abstraction by means of so called Abstract
Subsystems to solve problems in handling large scale mod-
els.

VIII. Conclusion

In this paper we have shown a way of integrating ac-
cess control security management into our existing common
management framework. The tool-assisted modeling of se-
curity policies is very similar to the modeling of common
management policies. Moreover the object diagram based
concept of model-based management is flexible enough to
extend existing models which disregard security issues by
adding the necessary elements for the desired security pol-
icy.

The presented service infrastructure easily integrates
into the SIRENA service infrastructure. Each service can
use the benefits of the existing authorization service by
making just a simple service action call. As the compu-
tations are made outside the embedded device, even small
devices can be access controlled. Nevertheless the shown
concepts are currently not applicable in the domain of real-
time constrained devices and services in some industrial or
automotive application areas for example. The required
cryptographic functions for signing SOAP messages or ver-
ifying the authentication codes of received messages do re-
quire some intense computations which would mostly break
the given time constraints.

Currently we are applying our management approach to
a real-world demonstrator spanning the home and auto-
motive domain developed in the context of the SIRENA
project to testify the applicability of our concepts in more
complex environments.

Furthermore, research on graph grammars for trans-
formation systems, and visual creation of complex graph
transformation rules in the style of regular expressions has
to be conducted.

Finally, the integration of an online deployment backend
for the transmission of the generated configurations to the
management services is a future goal of our work.

Acknowledgments

The work described herein was funded by the Ger-
man Federal Ministry of Education and Research (BMBF)
within the ITEA-SIRENA project (01ISC09G).

References

[1] F. Jammes and H. Smit, “Service-Oriented Paradigms in Indus-
trial Automation”, Proc. of the PDCN 2005 , Innsbruck, Aus-
tria, pp. 716–723, 2005.

[2] SIRENA (Service Infrastructure for Realtime Embedded Net-
worked Applications), http://www.sirena-itea.org, 2004

[3] P. Herrmann and H. Krumm, “Object-Oriented Security Analy-
sis and Modeling”, in Proceedings of the 9th Int. Conference on
Telecommunication Systems, pages 21-32, ATSMA, IFIP, 2001.

[4] M. Andries et. al., “Graph Transformation for Specification and
Programming”, Science of Computer Programming, Vol. 34,
1999.

[5] M. Sloman, “Policy Driven Management for Distributed Sys-
tems”, Journal of Network and Systems Management, Vol. 2,
No. 4, 1994.

[6] I. Lück, C. Schäfer, and H. Krumm, “Model-based Tool-
Assistance for Packet-Filter Design”, in: M. Sloman, E. Lupu,
J. Lobo (Eds.), Policy 2001, LNCS 1995, pp. 120-136, Springer-
Verlag, 2001.

[7] David Ferraiolo and Richard Kuhn, “ Role-Based Access Con-
trol”, Proc. of 15th National Computer Security Conference,
1992.

[8] M. Moyer and M. Ahamad, “Generalized Role-Based Access
Control”, Proc. 21st Int. Conf. on Distributed Computing Sys-
tems, Mesa, USA, pp. 391–398, 2001.

[9] S. Illner, H. Krumm, A. Pohl, I. Lück, D. Manka, and T. Sparen-
berg, “Policy Controlled Automated Management of Distributed
and Embedded Service Systems”, Proc. of the PDCN 2005 ,
Innsbruck, Austria, pp. 710–715, 2005.

[10] S. Illner, A. Pohl, H. Krumm, I. Lück, D. Manka, and T. Sparen-
berg, “Automated Runtime Management of Embedded Service
Systems Based on Design-Time Modeling and Model Transfor-
mation”, To appear in Proc. of the INDIN’05 , Perth, Australia,
2005.

[11] M. Andries et. al.,“Graph Transformation for Specification and
Programming”, Science of Computer Programming, Vol. 34, pp.
1–54, 1999.

[12] J. D. Moffett and M. S. Sloman, “Policy hierarchies for dis-
tributed system management”, IEEE JSAC Special Issue on
Network Management, 11(9), 11 1993.

[13] J. Porto, H. Krumm and P.L. de Geus, “Policy Modeling and
Refinement for Network Security Systems”, 6th IEEE Interna-
tional Workshop on Policies for Distributed Systems and Net-
works, pp. 24–33, 2005.

6

