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Abstract — The management of distributed and embedded 

service systems is a complex task as the services are exposed to 

changing environments which have to be reflected by the ser-

vices’ configurations.  These configurations are commonly 

based on abstract management policies. Embedded devices 

usually lack the resources to perform the necessary computa-

tions to derive an actual configuration from an abstract policy.  

Thus we developed a two phase management approach that 

splits up the management process into a design-time and a run-

time task. At design-time a model of the managed system is 

created. This model is augmented by high-level, environment-

aware management policies that are automatically refined to 

low-level service configurations using graph-transformation 

techniques. This phase is based on the concepts of model-based 

management and on parts of the Generalized Role Based Access 

Control model to handle the modeling of the environment-

aware policies. The runtime phase covers the enforcement of 

the environment-aware management policies by a set of man-

agement services responsible for the setting of suitable service 

configurations. 

 

Index Terms — model-based management, automatic & 

adaptive management, embedded service systems 

I. INTRODUCTION 

The automotive, industrial, home, and telecommunica-

tion domains perceive an increasing demand for embedded 

real-time applications which rely on cooperating networked 

devices. A plethora of devices is arising covering small and 

specialized devices with restricted computing power as well 

as well-equipped servers and workstations. Stationary and 

mobile devices cooperate in dynamically varying associa-

tions and utilize a wide variety of supporting services. Mo-

bility, changing tasks, as well as fluctuating supportive ser-

vice costs and availabilities demand that the frequently 

needed adaptations of application configurations are ac-

complished by automated application management func-

tions. The work presented in this paper is part of the ITEA 

SIRENA [1] project, which has the goal to develop a uni-

versal service infrastructure for real-time, networked and 

embedded devices, which can be utilized in the industrial, 

home, telecommunication and automotive domain. 

Our work focuses on the automated adaptation and re-

configuration of services in reaction to changes in the envi-

ronment. As embedded systems are addressed, the time 

spent for necessary configuration changes on the devices 

should be low, so no expensive computations can be done 

to accomplish this.  

Our approach to solve this problem is to divide the adap-

tation process in two parts. At design time, a model of the 

managed system is generated and configurations for the ser-

vices are created. At runtime, configuration changes confine 

to selecting and activating a suitable configuration. The en-

forcement of management policies is done by a separate 

management process at system runtime. 

The design time task, the creation of appropriate envi-

ronment related service configurations, is supported by a 

graphical modeling tool which allows the automated deriva-

tion of low-level configurations from high-level policies. 

The outline of the paper is as follows. First, we introduce 

the concept of model-based management. The elements 

which are used in modeling are explained in more detail in 

section III. The automated generation of policy elements by 

means of graph transformation techniques is subject of sec-

tion IV. The details of how the overall policy is enforced at 

runtime are given in section V. 

II. MODEL BASED MANAGEMENT 

The model-based management approach utilizes an ob-

ject-oriented model of the managed system to ease the crea-

tion and modeling of complex management policies. The 

graph-based modeling of a system is supported by a graphi-

cal modeling tool. Common policy-based management ap-

proaches [2] apply low level policies to describe manage-

ment demands. Systems created using the model-based ap-

proach ([3], [4]) use much more abstract high-level policies 

to describe the desired behavior, from which concrete ser-

vice configurations are automatically created.  

Basically a model is build up of some common and ap-

plication domain specific model nodes like Service or De-

vice and edges connecting these nodes. Each connection be-

tween two nodes expresses a specific dependency or rela-

tionship between these nodes. 

In common the model is divided into different abstrac-

tion layers ranging from a very abstract enterprise view, in-

cluding the high-level policies to be enforced, to low-level 

system elements like specific hosts, devices, and network 

protocol stacks. This approach was successfully applied for 

the creation of firewall [4], VPN [5] and Kerberos V con-

figurations. 
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Model Structure 

The OSI FCAPS framework defines five different areas 

of management: Fault-, Configuration-, Accounting-, Per-

formance-, and Security-Management. Previously the 

model-based management approach was mainly applied for 

the area of Security-Management. In the scope of the 

SIRENA project the other areas of management move into 

the focus. Moreover the creation of environment aware 

policies and the tighter connection to the area of service 

oriented architectures require the re-organization of the 

main model structure. This new model structure is outlined 

in Fig. 1.  

The model contains three abstraction layers, namely the 

“Roles & Goals” layer which contains the most abstract en-

terprise view, the “Services & Configurations” layer which 

deals with the services and abstract configuration relations 

between the services and last the less abstract “Devices & 

Files” layer containing the hardware devices, which are 

hosting the services and the XML configurations describing 

the low-level management policies in form of service con-

figuration-descriptions.  

The vertical adjustment divides the model into the Sys-

tem, Control, Policy, and the new Environment sections. 

The System section contains all model elements which rep-

resent parts of the managed system e.g. application services 

like a file- or mail-server, including the hosting hardware 

and devices. The Control section contains nothing on the 

upper layer, as the policy enforcing components are not 

visible above the “Services & Configurations” layer. The 

lower two abstraction layers contain the required policy en-

forcement services such as the Management Infrastructure 

Services and devices which host these services. Manage-

ment goals are modeled using specific policy objects. These 

are arranged in the Policy section of the model and are re-

fined in the lower layers. The most right column contains 

the objects required to model the environmental awareness 

of given management policies. 

III. MANAGEMENT MODEL ELEMENTS 

Management models are created for a specific applica-

tion domain, where the components are well known, as well 

as the possible relations (connections) between them. These 

elements and the information about their connectivity are 

subsumed in a so called meta-model. For every node type, 

the meta-model contains information to which other node 

connections are allowed, and with which cardinality. With 

this information, the correctness of the syntax of the model 

can be ensured during the model creation process, by check-

ing the constraints each time a new edge is inserted. More-

over each node may contain additional properties which 

conform to the properties of the represented real world ob-

ject. 

In Fig. 2, one can see a snapshot of a simplified example 

model, showing the System, Policy and a compressed Con-

trol section. In the following the basic elements are intro-

duced by means of this example. 

An Attribute Set element is used to group attributes of 

services. These groups are used by Management Goals to 

model specific requirements. In Fig. 2 the element named 

Normal Monitoring represents such an Attribute Set. It is 

connected to a single Service Attribute and one Service 

element. The former connection models that only the “Open 

Files” attribute, which contains the number of concurrently 

opened files, is part of the set. The latter connection states, 

that all attributes, namely the “Max Size” and the “Store 

Policy” attributes of this service are part of the Attribute 

Set. 

Management Goal elements are used to express specific 

targets of a management policy. The types of Management 

Goals are centered around the FCAPS areas of common 

management. Thus these elements may address goals re-

garding e.g. the fault, performance or security management 

areas. In the depicted example two goals are defined: the 

Monitoring goal defines a specific monitoring policy and 

the Load Management goal defines some mandatory con-

figuration tasks in case that the File Service is about to ex-

ceed its storage space capacities. The Load Management 

goal is connected to a so called Actual Configuration Chain 

which contains the actual reconfiguration information.  

When dealing with reconfiguration of services by setting 

specific service attributes to new values there have to be 

some elements that are able to express such new value set-

tings. Moreover in a reconfiguration phase the managed 

service may have to be restarted to activate the new con-

 
Fig. 1: Overall model structure 

 

 
 

Fig. 2: System, Control Services and Management Goals 
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figuration settings, so the service’s life cycle management is 

also in charge. The model element which deals with these 

issues is named an Actual Configuration Chain (cf. Fig. 2, 

right side). This element is built up of two other model ele-

ments, an Actual Value and a Lifecycle Management Com-

mand, which are connected by directed edges to enable the 

modeling of precedence of configuration settings. The Ac-

tual Value element itself is connected to the Service Attrib-

ute which should be set to the actual value. The Life Cycle 

Management Command element is connected to the service 

for which it should be invoked. In the example the Actual 

Configuration Chain contains reconfiguration tasks for the 

File- and Mail Service. The Mail Service’s attribute “Max 

Size” for the definition of the maximum size of an accepted 

incoming E-mail is set to the value of 500 kilobytes. After 

that the value of the “Store Policy” attribute is set to 

“cache” which means that the received E-mail should be 

cached locally and should not be saved using the existing 

File Service. After setting these two attributes a “Restart” 

Life Cycle Management Command is issued to activate the 

new configuration. Finally the File Service is put into a 

Read-Only mode by setting the attribute “Read Only” to 

“true”. Without the possibility of modeling configuration 

precedence the reconfiguration may have led to errors in the 

Mail Service as it might have tried to write to a read-only 

file system if the File Service would have been reconfigured 

already. 

Another model element is the Service element which rep-

resents a real world (SIRENA) service. It is characterized 

by its name and the attributes and operations it provides. In 

the example there are two services, a File Service and a 

Mail Service which both have two defined attributes that 

may be used for monitoring and reconfiguration issues. For 

readability reasons the service operations are omitted. 

Dependencies between services are modeled using di-

rected edges. In the example above the Mail Service de-

pends on the File Service as this is used to store the mail-

data. 

A Device is a model representation of a physical re-

source, hosting a service. In the example there are two de-

vices, which host the File- and Mail-Services and an addi-

tional device that hosts the services of the Runtime Man-

agement Infrastructure. 

The communication links between devices are modeled 

using the Link element. A Link is a representative for any 

arbitrary network connection. 

In Fig. 3 you can see the right side of the model, also in-

cluding parts of the policy and control section. 

The model described so far includes no information re-

garding the environmental state of the modeled system. This 

state information is now added by the introduction of Pro-

files. A Profile defines a specific environmental state, e.g. 

Working Hours or a specific fault state like Power Fault. 

The environmental state itself is defined using a logical ex-

pression over the activation state of so called Environment 

Roles. The notion of an Environment Role is adopted from 

the Generalized Role Based Access Control (GRBAC) 

model [6], an extension of the well known Role Based Ac-

cess Control model [7].  In original GRBAC the environ-

mental information was used to compute environment re-

lated access control decisions. We apply this scheme to 

model the environmental awareness of management poli-

cies. An Environment Role is defined by a logical expres-

sion e.g. a role named Weekend is defined like (Sat ∨ Sun). 

At runtime this expression is evaluated by a special Envi-

ronment Role Activation Service (cf. section V). If the ex-

pression evaluates to true the role is considered to be active. 

Supplied with a set of different types of Environment Roles 

one can easily model special system states by combining 

these roles using logical operators (e.g. ∧, ∨ or ¬). 

The elements introduced to this point have to be mod-

eled by hand; the last two elements described herein are 

created automatically by the modeling tool based on the in-

formation supplied by the model. The details of this deriva-

tion process are outlined in the next section.  

The first item that is generated automatically is the Con-

figuration Set. This element contains less abstract informa-

tion about the configurations to be enforced in certain situa-

tions and about the affected services including managed as 

well as management services. 

From the information gathered by the automatic deriva-

tion of the Configuration Set elements, from the information 

about the devices by which the services of the managed 

domain are hosted, and from the underlying network infra-

structure specific XML Configuration File elements are cre-

ated. These elements are directly related to real XML ser-

vice configuration-descriptions which can be deployed on 

the Runtime Management Infrastructure.  

Besides using the above outlined approach for the mod-

eling of common management policies we also apply it for 

modeling security policies as we already presented in [8] 

and [9]. 

IV. MODEL TRANSFORMATION 

After modeling the system and the abstract policy ele-

ments, the concrete configurations for the management ser-

 
 

Fig. 3: Control Services, Management Goals, Profiles and derived 

Configuration elements 
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vices are generated automatically. There are two different 

ways to conduct this automatic generation. 

Either, a meta-model contains transformation methods 

which describe the relevant graph structures to look for and 

the alteration function which should be applied to the graph 

in case that such a structure is found. The disadvantage of 

this approach is that these methods are hard-coded into the 

meta-model and a user may not simply extend or alter the 

functionality of the given methods. 

The other approach is the graph transformation approach 

[10] which we have chosen for our modeling tool. The idea 

of this is as follows: As stated above, the model is described 

by a graph. Therefore it is possible to define a graph trans-

formation system consisting of single transformation rules 

which alter the graph in a specified way. One such rule con-

sists of a left-hand side L and a right-hand side R, and on 

detection of a L in the model, this occurrence is replaced 

with an instance of R. L and R are graphs also, consisting of 

elements of the same meta-model as the model graph does. 

The rule elements can be specified using the tool in the 

same way the model is specified. So this approach fits very 

well in the concept of model-based management and users 

are given the ability to easily extend the transformation sys-

tems provided by the meta-model. 

After having modeled both sides of a rule, some nodes in 

L are identified with nodes in R, while others are not. The 

same applies to the edges in L and R. The algorithm to ap-

ply a rule r to a model graph M is roughly outlined by the 

following sequence: 

1) Find an occurrence of L in M 

2) Remove all components in M which occur in L, but 

do not have an identity component in R 

3) Insert all components into M which occur in R, but 

do not have an identity component in L 

The application of a rule r transforms the graph G to a 

Graph G', denoted by 'GG ⇒ . This is called a direct deri-

vation, and G' is directly derived from G. 

For a better control over the application of a rule, every 

rule can be augmented with two additional components. A 

condition allows to specify certain constraints which must 

be met by the detected sub graph L’ in order to match the 

defined pattern in the search. These constraints can refer to 

all attribute values of elements in L’. An effect function is a 

function which is applied to the inserted graph elements, 

and describes how the attribute values of the inserted ele-

ments are computed from the attributes of the elements of 

L’. 

The meta-model classes are designed in an object-

oriented manner. If inheritance is used in the meta-model, 

by using either base classes or derived classes in a rule, this 

rule can be made more general or more specific, as needed. 

The first step also introduces non-determinism into the 

transformation process, because a left-hand pattern may 

match multiple times in the given model graph. Therefore 

the resulting graph may depend on the order in which the 

occurrences are found. 

The automated, repeated application of a rule holds the 

risk of infinite recursion. Just imagine the case where L con-

sists of one node nL, and in R this node has an identity node 

nR, plus one more node mR. After the application of the rule, 

the node still remains in the model, and so this rules remains 

applicable. To circumvent this recursion, we use inhibiting 

graph components. An inhibiting component can only be 

part of a left hand graph L. Considering the use of inhibiting 

graph components, Step 1 of the transformation algorithm 

becomes: 

1') Find an occurrence of the non-inhibiting elements of 

L in G and make sure that the inhibiting elements of 

L do not appear in G the same way 

In the example above, to prevent recursion, one would 

introduce an identity node mL for mR in L and give it the in-

hibiting state. After the first direct derivation, 1') will not 

find any more valid occurrences of L, and terminates. 

Applying a rule r to a Graph G several times will result 

in a sequence nGGG ⇒⇒⇒ L1 . The result of several rule 

applications is called derivation, and Gn is derived from G. 

Usually, there will not be a single rule r, but a set P of 

rules
nrr ,,1 K , where each rule serves a specific purpose. 

The set P is called a graph transformation system. Systems 

can lead to another kind of non-determinism: There may be 

several rules r for which Lr is identified in G, with all asso-

ciated conditions fulfilled. The resulting graph G' depends 

on the rule chosen for transformation. If the order of prece-

dence does matter, rules can be assigned a priority. 

For the example model given in figures 2 and 3, the ap-

plication of a simple rule is depicted in Fig. 4. The left-hand 

side of the rule describes the situation that a Configuration 

Set exists, covering a specific attribute of a specific service, 

but no XML Configuration File exists which carries the 

configuration information for this service. The absence of 

this file is expressed by inserting this file with its connec-

tions into the left-hand side of the rule, but then setting 

these elements inhibiting, which is visually expressed by the 

dashed lines in Fig. 4a. 

In such a case, we know that there must be an XML con-

figuration file inserted into the model, which is expressed 

by the right-hand side of the rule. The newly introduced 

elements appear with a bold border. 

 
 

Fig. 4: Application of a rule to a model 
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In our management model, the following two rules are 

the most important ones from the transformation system: 

• Every Management Goal must have exactly one asso-

ciated Configuration Set. 

• For each service which can be reached via one of the 

paths ‘Configuration Set – Goal – Attribute Set – At-

tribute – Service’ or ‘Configuration Set – Goal – Con-

figuration Value Chain – Attribute – Service’, a Con-

figuration Set must be associated to XML Configura-

tions. 

After the automated generation of the attributes, the user 

can intervene and alter some values, if the necessity should 

arise. 

The graph transformation also has another valuable 

benefit for model checking. It is possible to specify certain 

graph patterns that are allowed for the left-hand side of a 

rule. For each pattern it is specified whether such a pattern 

is mandatory or forbidden. If a mandatory pattern is given, 

but no matching sub-graph is found in the model, the model 

is invalid. A model is also invalid, if any of the forbidden 

patterns is detected in the model graph. This allows the de-

tection of semantic errors, which cannot be caught by the 

static analysis of the connection restrictions defined in the 

meta-model. 

V. RUNTIME POLICY ENFORCEMENT 

The policies which are created by the modeling tool are 

deployed onto a runtime enforcement infrastructure (cf. Fig. 

5). This infrastructure contains the required services to en-

able the automatic and adaptive management of (embedded) 

service systems. The infrastructure is build up upon six ser-

vices, each responsible for a special area of service man-

agement. The Fault Management Service in conjunction 

with the Poll- and Event-Monitor services is responsible for 

the monitoring of service faults and fault-events. Changes in 

the values of monitored service parameters and received 

fault events are forwarded to the Environment-Role Activa-

tion Service which uses these parameter values and events 

to compute the set of active environment roles. The parame-

ters required for a computation of a role activation state are 

part of the role-definition which is done at design-time. 

Whenever a computation leads to a change in the set of ac-

tive environment-roles, these changes are notified to the 

Automatic Adaptation/Dynamic Reconfiguration (AADR) 

Service. This service is responsible for the automatic adap-

tation to environmental situations. To accomplish this task 

the service looks at the set of currently active environment-

roles and matches all profiles that are active with this set. If 

a change in the set of active profile occurs the correspond-

ing service configurations have to be enforced. The AADR 

Service determines the related configuration sets and in-

structs the Deployment Management Service to forward the 

configuration changes to the Service Control Management 

Services which are responsible for the involved services’ 

control. The Service Control Management Services deploy 

the new configurations and may use the Service Life-Cycle 

Management Service to activate the new configuration by 

restarting the involved services if necessary. 

VI. RELATED WORK 

Chisel [11] proposes a context-aware, policy-driven 

framework for adaptation of services. In this approach, the 

services will be adapted to use different behaviors, driven 

by a human-readable declarative adaptation policy script. 

Furthermore, the chisel framework allows to make mobile-

aware dynamic changes to the behavior of various middle-

ware-services, and it provides the addition of new unantici-

pated behaviors at run-time, without changing the middle-

ware or the application using it. 

Similarly, Lymberopoulos et al. [12] investigate dynamic 

adaptation of policies in response to changes within the 

managed environment. Here, policy adaptation includes 

both dynamically changing policy parameters and reconfig-

uring the policy objects. The proposed framework is pri-

marily used to provide dynamic management of services in 

Differentiated Services (DiffServ) networks.  

VII. OUTLOOK 

Currently we are implementing the described meta-

model for specific SIRENA demonstrators from the home, 

automotive and industrial domains to demonstrate the appli-

cability of our approach. To ease the creation of further 

models, basic model elements have been developed which 

are used as a basis for the implementation of the domain 

specific models. 

The modeling of management policies is supported by 

our management tool which allows the graphical modeling 

based on arbitrary meta-models. This tool is subject to on-

going development addressing the integration of supporting 

modeling features like visualization techniques and the so 

called Semantic Zooming that ease the handling of very 

large models. 

The presented graph transformation algorithm is part of 

our graphical modeling tool. This algorithm currently al-

lows the matching of graphically modeled graph patterns, 

 
Fig. 5: Runtime service infrastructure 
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including the refinement of a matching by accessing and us-

ing low level graph-element properties for left- and right-

hand patterns. The integration of graph grammars which in-

clude the specification of complex regular expressions may 

be an interesting extension to the existing algorithm and to 

currently used modeling principles. 

The services that are responsible for the runtime en-

forcement of the modeled management policies have been 

specified and are currently implemented. 

VIII. CONCLUDING REMARKS  

The approach presented in this paper applies a two-phase 

management approach split into the design-time task of 

modeling, analysis and automatic refinement of environ-

ment-aware management policies and the runtime enforce-

ment of these policies. The creation of models relies on so 

called meta-models that deal with the particularities of the 

addressed management domain. Here we presented a basic 

model that may be used as a basis for the creation of do-

main specific meta-models and includes all required base 

functionality to model the environment-aware management 

policies. Moreover we presented a graph-transformation 

based approach for the automatic refinement of modeled 

policies. 

The distinction between design-time and runtime tasks 

leverages the full power of model-based management on the 

one hand, while still ensuring that application of this 

method also provides adaptive management for small, em-

bedded devices which do not offer enough computing 

power to. 

The work described herein was funded by the German 

Federal Ministry of Education and Research (BMBF) within 

the ITEA-SIRENA project (01ISC09G). 
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