

1

Abstract — The management of distributed and embedded

service systems is a complex task as the services are exposed to

changing environments which have to be reflected by the ser-

vices’ configurations. These configurations are commonly

based on abstract management policies. Embedded devices

usually lack the resources to perform the necessary computa-

tions to derive an actual configuration from an abstract policy.

Thus we developed a two phase management approach that

splits up the management process into a design-time and a run-

time task. At design-time a model of the managed system is

created. This model is augmented by high-level, environment-

aware management policies that are automatically refined to

low-level service configurations using graph-transformation

techniques. This phase is based on the concepts of model-based

management and on parts of the Generalized Role Based Access

Control model to handle the modeling of the environment-

aware policies. The runtime phase covers the enforcement of

the environment-aware management policies by a set of man-

agement services responsible for the setting of suitable service

configurations.

Index Terms — model-based management, automatic &

adaptive management, embedded service systems

I. INTRODUCTION

The automotive, industrial, home, and telecommunica-

tion domains perceive an increasing demand for embedded

real-time applications which rely on cooperating networked

devices. A plethora of devices is arising covering small and

specialized devices with restricted computing power as well

as well-equipped servers and workstations. Stationary and

mobile devices cooperate in dynamically varying associa-

tions and utilize a wide variety of supporting services. Mo-

bility, changing tasks, as well as fluctuating supportive ser-

vice costs and availabilities demand that the frequently

needed adaptations of application configurations are ac-

complished by automated application management func-

tions. The work presented in this paper is part of the ITEA

SIRENA [1] project, which has the goal to develop a uni-

versal service infrastructure for real-time, networked and

embedded devices, which can be utilized in the industrial,

home, telecommunication and automotive domain.

Our work focuses on the automated adaptation and re-

configuration of services in reaction to changes in the envi-

ronment. As embedded systems are addressed, the time

spent for necessary configuration changes on the devices

should be low, so no expensive computations can be done

to accomplish this.

Our approach to solve this problem is to divide the adap-

tation process in two parts. At design time, a model of the

managed system is generated and configurations for the ser-

vices are created. At runtime, configuration changes confine

to selecting and activating a suitable configuration. The en-

forcement of management policies is done by a separate

management process at system runtime.

The design time task, the creation of appropriate envi-

ronment related service configurations, is supported by a

graphical modeling tool which allows the automated deriva-

tion of low-level configurations from high-level policies.

The outline of the paper is as follows. First, we introduce

the concept of model-based management. The elements

which are used in modeling are explained in more detail in

section III. The automated generation of policy elements by

means of graph transformation techniques is subject of sec-

tion IV. The details of how the overall policy is enforced at

runtime are given in section V.

II. MODEL BASED MANAGEMENT

The model-based management approach utilizes an ob-

ject-oriented model of the managed system to ease the crea-

tion and modeling of complex management policies. The

graph-based modeling of a system is supported by a graphi-

cal modeling tool. Common policy-based management ap-

proaches [2] apply low level policies to describe manage-

ment demands. Systems created using the model-based ap-

proach ([3], [4]) use much more abstract high-level policies

to describe the desired behavior, from which concrete ser-

vice configurations are automatically created.

Basically a model is build up of some common and ap-

plication domain specific model nodes like Service or De-

vice and edges connecting these nodes. Each connection be-

tween two nodes expresses a specific dependency or rela-

tionship between these nodes.

In common the model is divided into different abstrac-

tion layers ranging from a very abstract enterprise view, in-

cluding the high-level policies to be enforced, to low-level

system elements like specific hosts, devices, and network

protocol stacks. This approach was successfully applied for

the creation of firewall [4], VPN [5] and Kerberos V con-

figurations.

 Stefan Illner, Andre Pohl and Heiko Krumm

FB Informatik, Universität Dortmund

44221 Dortmund, Germany

e-mail: {stefan.illner, andre.pohl, heiko.krumm}@udo.edu

Automated Runtime Management of Embedded Service Systems Based

on Design-Time Modeling and Model Transformation

 Ingo Lück, Darius Manka and Thomas Sparenberg

Materna Information & Communications

 44141 Dortmund, Germany

e-mail: {ilueck, dmanka, tsparenb}@materna.de

Id: udo-indin05.doc 2005-05-25 17:02:48Z krumm

2

Model Structure

The OSI FCAPS framework defines five different areas

of management: Fault-, Configuration-, Accounting-, Per-

formance-, and Security-Management. Previously the

model-based management approach was mainly applied for

the area of Security-Management. In the scope of the

SIRENA project the other areas of management move into

the focus. Moreover the creation of environment aware

policies and the tighter connection to the area of service

oriented architectures require the re-organization of the

main model structure. This new model structure is outlined

in Fig. 1.

The model contains three abstraction layers, namely the

“Roles & Goals” layer which contains the most abstract en-

terprise view, the “Services & Configurations” layer which

deals with the services and abstract configuration relations

between the services and last the less abstract “Devices &

Files” layer containing the hardware devices, which are

hosting the services and the XML configurations describing

the low-level management policies in form of service con-

figuration-descriptions.

The vertical adjustment divides the model into the Sys-

tem, Control, Policy, and the new Environment sections.

The System section contains all model elements which rep-

resent parts of the managed system e.g. application services

like a file- or mail-server, including the hosting hardware

and devices. The Control section contains nothing on the

upper layer, as the policy enforcing components are not

visible above the “Services & Configurations” layer. The

lower two abstraction layers contain the required policy en-

forcement services such as the Management Infrastructure

Services and devices which host these services. Manage-

ment goals are modeled using specific policy objects. These

are arranged in the Policy section of the model and are re-

fined in the lower layers. The most right column contains

the objects required to model the environmental awareness

of given management policies.

III. MANAGEMENT MODEL ELEMENTS

Management models are created for a specific applica-

tion domain, where the components are well known, as well

as the possible relations (connections) between them. These

elements and the information about their connectivity are

subsumed in a so called meta-model. For every node type,

the meta-model contains information to which other node

connections are allowed, and with which cardinality. With

this information, the correctness of the syntax of the model

can be ensured during the model creation process, by check-

ing the constraints each time a new edge is inserted. More-

over each node may contain additional properties which

conform to the properties of the represented real world ob-

ject.

In Fig. 2, one can see a snapshot of a simplified example

model, showing the System, Policy and a compressed Con-

trol section. In the following the basic elements are intro-

duced by means of this example.

An Attribute Set element is used to group attributes of

services. These groups are used by Management Goals to

model specific requirements. In Fig. 2 the element named

Normal Monitoring represents such an Attribute Set. It is

connected to a single Service Attribute and one Service

element. The former connection models that only the “Open

Files” attribute, which contains the number of concurrently

opened files, is part of the set. The latter connection states,

that all attributes, namely the “Max Size” and the “Store

Policy” attributes of this service are part of the Attribute

Set.

Management Goal elements are used to express specific

targets of a management policy. The types of Management

Goals are centered around the FCAPS areas of common

management. Thus these elements may address goals re-

garding e.g. the fault, performance or security management

areas. In the depicted example two goals are defined: the

Monitoring goal defines a specific monitoring policy and

the Load Management goal defines some mandatory con-

figuration tasks in case that the File Service is about to ex-

ceed its storage space capacities. The Load Management

goal is connected to a so called Actual Configuration Chain

which contains the actual reconfiguration information.

When dealing with reconfiguration of services by setting

specific service attributes to new values there have to be

some elements that are able to express such new value set-

tings. Moreover in a reconfiguration phase the managed

service may have to be restarted to activate the new con-

Fig. 1: Overall model structure

Fig. 2: System, Control Services and Management Goals

3

figuration settings, so the service’s life cycle management is

also in charge. The model element which deals with these

issues is named an Actual Configuration Chain (cf. Fig. 2,

right side). This element is built up of two other model ele-

ments, an Actual Value and a Lifecycle Management Com-

mand, which are connected by directed edges to enable the

modeling of precedence of configuration settings. The Ac-

tual Value element itself is connected to the Service Attrib-

ute which should be set to the actual value. The Life Cycle

Management Command element is connected to the service

for which it should be invoked. In the example the Actual

Configuration Chain contains reconfiguration tasks for the

File- and Mail Service. The Mail Service’s attribute “Max

Size” for the definition of the maximum size of an accepted

incoming E-mail is set to the value of 500 kilobytes. After

that the value of the “Store Policy” attribute is set to

“cache” which means that the received E-mail should be

cached locally and should not be saved using the existing

File Service. After setting these two attributes a “Restart”

Life Cycle Management Command is issued to activate the

new configuration. Finally the File Service is put into a

Read-Only mode by setting the attribute “Read Only” to

“true”. Without the possibility of modeling configuration

precedence the reconfiguration may have led to errors in the

Mail Service as it might have tried to write to a read-only

file system if the File Service would have been reconfigured

already.

Another model element is the Service element which rep-

resents a real world (SIRENA) service. It is characterized

by its name and the attributes and operations it provides. In

the example there are two services, a File Service and a

Mail Service which both have two defined attributes that

may be used for monitoring and reconfiguration issues. For

readability reasons the service operations are omitted.

Dependencies between services are modeled using di-

rected edges. In the example above the Mail Service de-

pends on the File Service as this is used to store the mail-

data.

A Device is a model representation of a physical re-

source, hosting a service. In the example there are two de-

vices, which host the File- and Mail-Services and an addi-

tional device that hosts the services of the Runtime Man-

agement Infrastructure.

The communication links between devices are modeled

using the Link element. A Link is a representative for any

arbitrary network connection.

In Fig. 3 you can see the right side of the model, also in-

cluding parts of the policy and control section.

The model described so far includes no information re-

garding the environmental state of the modeled system. This

state information is now added by the introduction of Pro-

files. A Profile defines a specific environmental state, e.g.

Working Hours or a specific fault state like Power Fault.

The environmental state itself is defined using a logical ex-

pression over the activation state of so called Environment

Roles. The notion of an Environment Role is adopted from

the Generalized Role Based Access Control (GRBAC)

model [6], an extension of the well known Role Based Ac-

cess Control model [7]. In original GRBAC the environ-

mental information was used to compute environment re-

lated access control decisions. We apply this scheme to

model the environmental awareness of management poli-

cies. An Environment Role is defined by a logical expres-

sion e.g. a role named Weekend is defined like (Sat ∨ Sun).

At runtime this expression is evaluated by a special Envi-

ronment Role Activation Service (cf. section V). If the ex-

pression evaluates to true the role is considered to be active.

Supplied with a set of different types of Environment Roles

one can easily model special system states by combining

these roles using logical operators (e.g. ∧, ∨ or ¬).

The elements introduced to this point have to be mod-

eled by hand; the last two elements described herein are

created automatically by the modeling tool based on the in-

formation supplied by the model. The details of this deriva-

tion process are outlined in the next section.

The first item that is generated automatically is the Con-

figuration Set. This element contains less abstract informa-

tion about the configurations to be enforced in certain situa-

tions and about the affected services including managed as

well as management services.

From the information gathered by the automatic deriva-

tion of the Configuration Set elements, from the information

about the devices by which the services of the managed

domain are hosted, and from the underlying network infra-

structure specific XML Configuration File elements are cre-

ated. These elements are directly related to real XML ser-

vice configuration-descriptions which can be deployed on

the Runtime Management Infrastructure.

Besides using the above outlined approach for the mod-

eling of common management policies we also apply it for

modeling security policies as we already presented in [8]

and [9].

IV. MODEL TRANSFORMATION

After modeling the system and the abstract policy ele-

ments, the concrete configurations for the management ser-

Fig. 3: Control Services, Management Goals, Profiles and derived

Configuration elements

4

vices are generated automatically. There are two different

ways to conduct this automatic generation.

Either, a meta-model contains transformation methods

which describe the relevant graph structures to look for and

the alteration function which should be applied to the graph

in case that such a structure is found. The disadvantage of

this approach is that these methods are hard-coded into the

meta-model and a user may not simply extend or alter the

functionality of the given methods.

The other approach is the graph transformation approach

[10] which we have chosen for our modeling tool. The idea

of this is as follows: As stated above, the model is described

by a graph. Therefore it is possible to define a graph trans-

formation system consisting of single transformation rules

which alter the graph in a specified way. One such rule con-

sists of a left-hand side L and a right-hand side R, and on

detection of a L in the model, this occurrence is replaced

with an instance of R. L and R are graphs also, consisting of

elements of the same meta-model as the model graph does.

The rule elements can be specified using the tool in the

same way the model is specified. So this approach fits very

well in the concept of model-based management and users

are given the ability to easily extend the transformation sys-

tems provided by the meta-model.

After having modeled both sides of a rule, some nodes in

L are identified with nodes in R, while others are not. The

same applies to the edges in L and R. The algorithm to ap-

ply a rule r to a model graph M is roughly outlined by the

following sequence:

1) Find an occurrence of L in M

2) Remove all components in M which occur in L, but

do not have an identity component in R

3) Insert all components into M which occur in R, but

do not have an identity component in L

The application of a rule r transforms the graph G to a

Graph G', denoted by 'GG ⇒ . This is called a direct deri-

vation, and G' is directly derived from G.

For a better control over the application of a rule, every

rule can be augmented with two additional components. A

condition allows to specify certain constraints which must

be met by the detected sub graph L’ in order to match the

defined pattern in the search. These constraints can refer to

all attribute values of elements in L’. An effect function is a

function which is applied to the inserted graph elements,

and describes how the attribute values of the inserted ele-

ments are computed from the attributes of the elements of

L’.

The meta-model classes are designed in an object-

oriented manner. If inheritance is used in the meta-model,

by using either base classes or derived classes in a rule, this

rule can be made more general or more specific, as needed.

The first step also introduces non-determinism into the

transformation process, because a left-hand pattern may

match multiple times in the given model graph. Therefore

the resulting graph may depend on the order in which the

occurrences are found.

The automated, repeated application of a rule holds the

risk of infinite recursion. Just imagine the case where L con-

sists of one node nL, and in R this node has an identity node

nR, plus one more node mR. After the application of the rule,

the node still remains in the model, and so this rules remains

applicable. To circumvent this recursion, we use inhibiting

graph components. An inhibiting component can only be

part of a left hand graph L. Considering the use of inhibiting

graph components, Step 1 of the transformation algorithm

becomes:

1') Find an occurrence of the non-inhibiting elements of

L in G and make sure that the inhibiting elements of

L do not appear in G the same way

In the example above, to prevent recursion, one would

introduce an identity node mL for mR in L and give it the in-

hibiting state. After the first direct derivation, 1') will not

find any more valid occurrences of L, and terminates.

Applying a rule r to a Graph G several times will result

in a sequence nGGG ⇒⇒⇒ L1 . The result of several rule

applications is called derivation, and Gn is derived from G.

Usually, there will not be a single rule r, but a set P of

rules
nrr ,,1 K , where each rule serves a specific purpose.

The set P is called a graph transformation system. Systems

can lead to another kind of non-determinism: There may be

several rules r for which Lr is identified in G, with all asso-

ciated conditions fulfilled. The resulting graph G' depends

on the rule chosen for transformation. If the order of prece-

dence does matter, rules can be assigned a priority.

For the example model given in figures 2 and 3, the ap-

plication of a simple rule is depicted in Fig. 4. The left-hand

side of the rule describes the situation that a Configuration

Set exists, covering a specific attribute of a specific service,

but no XML Configuration File exists which carries the

configuration information for this service. The absence of

this file is expressed by inserting this file with its connec-

tions into the left-hand side of the rule, but then setting

these elements inhibiting, which is visually expressed by the

dashed lines in Fig. 4a.

In such a case, we know that there must be an XML con-

figuration file inserted into the model, which is expressed

by the right-hand side of the rule. The newly introduced

elements appear with a bold border.

Fig. 4: Application of a rule to a model

5

In our management model, the following two rules are

the most important ones from the transformation system:

• Every Management Goal must have exactly one asso-

ciated Configuration Set.

• For each service which can be reached via one of the

paths ‘Configuration Set – Goal – Attribute Set – At-

tribute – Service’ or ‘Configuration Set – Goal – Con-

figuration Value Chain – Attribute – Service’, a Con-

figuration Set must be associated to XML Configura-

tions.

After the automated generation of the attributes, the user

can intervene and alter some values, if the necessity should

arise.

The graph transformation also has another valuable

benefit for model checking. It is possible to specify certain

graph patterns that are allowed for the left-hand side of a

rule. For each pattern it is specified whether such a pattern

is mandatory or forbidden. If a mandatory pattern is given,

but no matching sub-graph is found in the model, the model

is invalid. A model is also invalid, if any of the forbidden

patterns is detected in the model graph. This allows the de-

tection of semantic errors, which cannot be caught by the

static analysis of the connection restrictions defined in the

meta-model.

V. RUNTIME POLICY ENFORCEMENT

The policies which are created by the modeling tool are

deployed onto a runtime enforcement infrastructure (cf. Fig.

5). This infrastructure contains the required services to en-

able the automatic and adaptive management of (embedded)

service systems. The infrastructure is build up upon six ser-

vices, each responsible for a special area of service man-

agement. The Fault Management Service in conjunction

with the Poll- and Event-Monitor services is responsible for

the monitoring of service faults and fault-events. Changes in

the values of monitored service parameters and received

fault events are forwarded to the Environment-Role Activa-

tion Service which uses these parameter values and events

to compute the set of active environment roles. The parame-

ters required for a computation of a role activation state are

part of the role-definition which is done at design-time.

Whenever a computation leads to a change in the set of ac-

tive environment-roles, these changes are notified to the

Automatic Adaptation/Dynamic Reconfiguration (AADR)

Service. This service is responsible for the automatic adap-

tation to environmental situations. To accomplish this task

the service looks at the set of currently active environment-

roles and matches all profiles that are active with this set. If

a change in the set of active profile occurs the correspond-

ing service configurations have to be enforced. The AADR

Service determines the related configuration sets and in-

structs the Deployment Management Service to forward the

configuration changes to the Service Control Management

Services which are responsible for the involved services’

control. The Service Control Management Services deploy

the new configurations and may use the Service Life-Cycle

Management Service to activate the new configuration by

restarting the involved services if necessary.

VI. RELATED WORK

Chisel [11] proposes a context-aware, policy-driven

framework for adaptation of services. In this approach, the

services will be adapted to use different behaviors, driven

by a human-readable declarative adaptation policy script.

Furthermore, the chisel framework allows to make mobile-

aware dynamic changes to the behavior of various middle-

ware-services, and it provides the addition of new unantici-

pated behaviors at run-time, without changing the middle-

ware or the application using it.

Similarly, Lymberopoulos et al. [12] investigate dynamic

adaptation of policies in response to changes within the

managed environment. Here, policy adaptation includes

both dynamically changing policy parameters and reconfig-

uring the policy objects. The proposed framework is pri-

marily used to provide dynamic management of services in

Differentiated Services (DiffServ) networks.

VII. OUTLOOK

Currently we are implementing the described meta-

model for specific SIRENA demonstrators from the home,

automotive and industrial domains to demonstrate the appli-

cability of our approach. To ease the creation of further

models, basic model elements have been developed which

are used as a basis for the implementation of the domain

specific models.

The modeling of management policies is supported by

our management tool which allows the graphical modeling

based on arbitrary meta-models. This tool is subject to on-

going development addressing the integration of supporting

modeling features like visualization techniques and the so

called Semantic Zooming that ease the handling of very

large models.

The presented graph transformation algorithm is part of

our graphical modeling tool. This algorithm currently al-

lows the matching of graphically modeled graph patterns,

Fig. 5: Runtime service infrastructure

6

including the refinement of a matching by accessing and us-

ing low level graph-element properties for left- and right-

hand patterns. The integration of graph grammars which in-

clude the specification of complex regular expressions may

be an interesting extension to the existing algorithm and to

currently used modeling principles.

The services that are responsible for the runtime en-

forcement of the modeled management policies have been

specified and are currently implemented.

VIII. CONCLUDING REMARKS

The approach presented in this paper applies a two-phase

management approach split into the design-time task of

modeling, analysis and automatic refinement of environ-

ment-aware management policies and the runtime enforce-

ment of these policies. The creation of models relies on so

called meta-models that deal with the particularities of the

addressed management domain. Here we presented a basic

model that may be used as a basis for the creation of do-

main specific meta-models and includes all required base

functionality to model the environment-aware management

policies. Moreover we presented a graph-transformation

based approach for the automatic refinement of modeled

policies.

The distinction between design-time and runtime tasks

leverages the full power of model-based management on the

one hand, while still ensuring that application of this

method also provides adaptive management for small, em-

bedded devices which do not offer enough computing

power to.

The work described herein was funded by the German

Federal Ministry of Education and Research (BMBF) within

the ITEA-SIRENA project (01ISC09G).

IX. REFERENCES

[1] SIRENA: Service Infrastructure for Real time Embedded Networked

Applications, Project in the European Framework ITEA, see URL:

http://www.sirena-itea.org (2003-2005).

[2] M. Sloman, “Policy Driven Management for Distributed Systems”,

Journal of Network and Systems Management, Vol. 2, No. 4, 1994.

[3] P. Herrmann and H. Krumm, “Object-Oriented Security Analysis

and Modeling”, in Proceedings of the 9th Int. Conference on Tele-

communication Systems, pages 21-32, ATSMA, IFIP, 2001.

[4] I. Lück, C. Schäfer, and H. Krumm, “Model-based Tool-Assistance

for Packet-Filter Design”, in: M. Sloman, E. Lupu, J. Lobo (Eds.),

Policy 2001, LNCS 1995, pp. 120-136, Springer-Verlag, 2001.

[5] I. Lück, S. Vögel, and H. Krumm, “Model-based configuration of

VPNs”, in R. Stadtler, M. Ulema (eds.): Proc. 8th IEEE/IFIP Sympo-

sium NOMS 2002, IEEE, pages 589-602, 2002.

[6] M. J. Moyer and M. Ahamad, “Generalized Role-Based Access Con-

trol”, in: IEEE Proceedings of the 21st International Conference on

Distributed Systems, Mesa, April 2001.

[7] D. Ferraiolo and R. Kuhn, “Role Based Access Control”, in: Pro-

ceedings of the 15th National Computer Science Conference, 1992.

[8] Stefan Illner, Andre Pohl, and Heiko Krumm, “Security Service Ad-

aptation for Embedded Service Systems in Changing Environ-

ments”, in Proc. of the 2nd Int. Conf. on Industrial Informatics

(INDIN’04), 2004, 457-462.

[9] Stefan Illner, Heiko Krumm, Andre Pohl, Ingo Lück, Darius Manka,

and Thomas Sparenberg, “Policy Controlled Automated Manage-

ment of Distributed and Embedded Service Systems”, in Proc. of the

IASTED Int. Conf. on Parallel and Distributed Computing and Net-

works (PDCN), 2005, 710-715.

[10] M. Andries et. al., “Graph Transformation for Specification and Pro-

gramming”, Science of Computer Programming, Vol. 34, 1999.

[11] J. Keeney and V. Cahill, “Chisel: A Policy-Driven, Context-Aware,

Dynamic Adaptation Framework”, Fourth IEEE International Work-

shop on Policies for Distributed Systems and Networks (POLICY

2003), Lake Como, Italy, 2003.

[12] L. Lymberopoulos, E. Lupu and M. Sloman, “An Adaptive Policy-

Based Framework for Network Services Management”, Journal of

Network and Systems Management, 11(27), 2003.

