
indin06-udo-060602-1-draft.doc

1

Abstract—Service-orientation supports the construction of

flexible and comprehensive industrial applications. The grow-

ing scale and complexity of the applications, however, demand

for enhanced self-management functions providing efficient

self-adaptation and repair mechanisms. We propose the ap-

proach of policy-controlled self-management which has been

developed and successfully tested in the context of Web Ser-

vice based control applications. We use hierarchically struc-

tured management policies where high-level policies serve as

abstract definitions of management objectives and low-level

policies represent concrete rules for resource monitoring und

correcting interventions. The definition, analysis, refinement

and deployment of the policies are supported by an interactive

graphical modeling tool.

Index Terms—model-based management, fault tolerant sys-

tems, web services

I. INTRODUCTION

Currently service-orientation is expanding into the field

of industrial automation in order to support flexible, dy-

namically adaptable systems which – particularly when em-

ploying open and standardized communication mechanisms

like Web Services – facilitate the mutual integration of fac-

tory automation and enterprise information systems [Jam05,

Jam05a]. Contemporaneously, the growing scale and het-

erogeneity of networked IT-systems lead to an increasing

complexity of the tasks of technical system administration

and management which have to provide for the continuous,

accessible and user transparent operation. Therefore there

is a strong demand for self-managing systems which e.g.

led to IBM’s initiative of Autonomic Computing [Gan03],

the efforts of which focus on the integration of self-

management techniques for the automated configuration,

fault correction, optimization and protection of comprehen-

sive networked systems.

The term of technical management comprises all the

technical tasks which are necessary for the proper operation

of IT-systems in addition to software development and dis-

tribution, i.e. particularly component deployment, initial

setting-up, hard- and software configuration, logging, audit-

ing, monitoring, short- and long term adaptation, alert han-

dling, fault detection, diagnosis, proactive maintenance, re-

pair and reconfiguration. According to the ISO/OSI frame-

work, technical management concerns the five functional

areas of fault, configuration, accounting/administration,

performance and security management (cf. e.g. [Heg99]).

As automation in general, management automation also

requires definitions of control objectives and control algo-

rithms. Both purposes can suitably be served by the ap-

proach of policy-based management [Slo94] which is well-

known in the field of communication network management.

The so-called management policies describe the relevant

preferences, objectives and rules which govern the execu-

tion of management operations. For automation, particu-

larly policy hierarchies can be employed which support dif-

ferent levels of abstraction [Mof93]. So, high-level policies

can act as abstract definitions of management objectives

and low-level policies can represent concrete rules for re-

source monitoring und correcting interventions.

Our approach of model-based management is an en-

hancement of policy-based management and policy hierar-

chies. Moreover it relies on a tool and a hierarchical system

model. Tool operation and system modeling are performed

at design-time. The tool supports the system modeling, the

high-level policy acquisition and their analysis. Due to the

information of the system model, it automatically refines

the policies and derives corresponding correct, consistent

and automatically enforceable low-level policies [Lue02]

which reflect all possible system conditions and define the

configuration of an efficient and lightweight automated run-

time management system.

In the last two years we participated in the SIRENA pro-

ject [Jam05b] in the course of which a comprehensive Ser-

vice Infrastructure for Real time Embedded Networked

Applications has been developed and successfully demon-

strated in industrial, automotive and home environments.

Moreover we studied the application of Web service based

systems in industrial environments by means of a distrib-

uted conveying system control application [Bri06]. In each

case our work concentrated on the provision of automated

technical management and was based on an extension and

specialization of the model-based management approach.

Several aspects of that work have already been published.

Stefan Illner, Andre Pohl, and Heiko Krumm,
Department of Computer Science

 University of Dortmund

August-Schmidt-Str. 12

44227 Dortmund, GERMANY

{illner, pohl, krumm}@cs.uni-dortmund.de

Ingo Lück, Darius Manka, and Franz-Josef Stewing
Materna GmbH

Voßkuhle 37

44141 Dortmund, GERMANY

{ingo.lueck, darius.manka ,franz-josef.stewing} @materna.de

Policy-based self-management of industrial service systems

indin06-udo-060602-1-draft.doc

2

In particular, [Ill04] reports on the automated adaptation of

security service configurations to changing environment

conditions. [Ilp05] expands the scope to general technical

management and presents the overall context of modeling,

tool and distributed management systems. [Ilk05] enters

into the tool-based hierarchical system and policy modeling

which is exemplified by means of an automotive scenario.

In this paper, we focus on the principles of those policy

elements which define objectives and rules of self-

management functions for industrial service systems. We

present an adequate policy hierarchy, outline the principles

of suitable system architectures, and discuss the employ-

ment of the policies for the automated control of the run-

time management functions.

In the sequel a short introduction to policy-based man-

agement is given. It is followed by an outline of the model-

based management approach. Since, besides of proper func-

tionality, reliability is a central requirement of industrial

systems, principles of fault tolerant computing are of rele-

vance and outlined in the next section. The following three

sections describe the developed policy definition and repre-

sentation in the three hierarchy layers of the approach

which provide an abstract logical view, a service view, and

a device view. Concluding remarks present a summary of

the contributions and moreover address application experi-

ences.

II. POLICY-BASED TECHNICAL MANAGEMENT

In the last two decades promising basic approaches for

automated management centering around management pol-

icy definitions have particularly been developed in the con-

text of technical network management [Ver02, Slo94]. Pol-

icy-based systems separate the policy from the implementa-

tion of a system and therefore permit the policy to be modi-

fied without changing the systems underlying implementa-

tion. Different types of policies (e.g., user policies, provider

policies, resource policies, security policies, accounting

policies) reflect the relevant objectives of operation and

serve as prescriptions of automated system control. Mean-

while a series of policy management standards is emerging

(e.g. [Box04, Cim03, Wes01]) and we also anticipate pol-

icy extensions for the Web Services Distributed Manage-

ment (WSDM) standardization [Oas05].

The architecture of the policy-based management system

is affected by the presence of policy enforcement units,

each near to a corresponding managed resource [Wie94].

The defined policies are distributed and deployed to the

units in form of dedicated descriptions. Policies to be sup-

plied to and interpreted by resource-near enforcement units

essentially express management actions in a low-level, re-

source-oriented and efficiently executable form, mostly fol-

lowing the “if condition then action” metaphor (e.g. [Lob99]).

Advantages of more abstract and system-integral policy de-

scriptions, however, have been recognized early. Particu-

larly the approach of policy hierarchies proposes the em-

ployment of hierarchical abstraction layers supporting the

stepwise refinement of policies [Mof93, Wie94]. Due to the

increasing details and resource dependence of low-level

policies, however, the refinements cannot be computed me-

chanically without additional means. Further important de-

sign problems of management policies concern the global

consistency of those policies which are composed from dif-

ferent parts. The parts can reflect certain but not necessarily

orthogonal management aspects or are oriented at certain

resources. Therefore, especially in complex and heteroge-

neous networked systems, global policies tend to contain

incompatible or contradictious elements (see e.g. [Kem05]).

III. MODEL-BASED MANAGEMENT

The approach of model-based management (MBM) con-

siders that each automated management system has to be

tailored to its given managed system, since it has to con-

sider its special purpose and operational requirements. In

consequence the cost reduction of management automation

is paid by high costs needed for the design and implementa-

tion of the automated management system. MBM therefore

shifts the focus (and the major efforts) of management sys-

tem development from the management application design

to the identification of the managed system and the man-

agement objectives.

The identification is performed by modeling. By means

of a three-layered model, the managed system is repre-

sented with respect to architecture and configuration, ser-

vices provided, and management objectives. High-level

management policies express the abstract management ob-

jectives. After modeling of the managed system and the

high-level management policies, the model is extended by

models of the components of the management system. The

low-level management policies which enforce the high level

policies in correspondingly governing the functions of

management system are derived from the model as well as

Fig. 1. Example of a layered model

indin06-udo-060602-1-draft.doc

3

the adequate management system configuration.

The modeling is supported by an interactive graphical

tool and by meta-model class libraries. A model has the

form of an object instance diagram (as known from UML)

and is handled by its graphical diagram representation. The

extension of models with the management system compo-

nents and the derivation of management policy refinements

moreover are supported by graph rewriting rule libraries.

Furthermore backend functions of the tool achieve the gen-

eration of configuration data files.

The three-layered modeling (cf. Fig. 1) of managed sys-

tem, management system, and management policies particu-

larly supports the design of adequate and well-understood

management policies since one can inspect, discuss, and

check the policies on three different levels of abstraction.

The automated derivation of the middle layer policies and

of the lowest layer ones supports policy refinements which

guarantee that the abstract high-level policies are correctly

and completely enforced by the concrete management sys-

tem.

IV. FAULT TOLERANT SERVICE SYSTEMS

Though using the most reliable hardware and software

products for an IT system, various minor or major faults

may occur. Depending on the importance of the affected

subsystems fast and solid fault management has to take

place to ensure the proper overall operation of the complete

system. The design and operation of fault tolerant systems

is a very complex task. The manual location and repair of

faulty soft- or hardware components may be to slow and

time consuming and not applicable in commercial and in-

dustrial IT environments. Moreover each minute that the

system is not properly operational reduces the overall

availability of the system and thus may violate negotiated

service level agreements. For this reason the installation of

fault tolerance mechanisms is mandatory. Fault tolerant sys-

tems rely on some basic mechanisms that are able to deal

with different types of fault situations.

Fault detection recognizes and identifies the occurring

faults and is based on the instrumentation of the system

with sensors and test functions. The following fault repair

is mainly based on redundancy. There are several types of

redundancy that address hard- and software fault handling.

The notion of redundancy makes a distinction between

structural, functional, informational and time redundancy.

Moreover there is a distinction concerning the activation of

redundancy: static redundancy states that the redundant

components are operational all the time whilst dynamic re-

dundancy defines that redundant components only are acti-

vated in case of an error (cf.. [Ech90]).

In case of a fault a redundant system is able to react in

different ways. Using error passivation the system is able

to remedy erroneous subsystems by reconfiguration of the

erroneous or surrounding system parts, by elimination of

faulty and insertion of replacement components or by

evacuation of parts to not affected areas of the system. To

gain a proper system state, error recovery mechanisms like

forward- and backward error recovery can be used. To be

able to use backward error recovery the fault tolerant sys-

tem has to collect a history of proper system states to which

the system may be reset in the case of a fault. The forward

error recovery does not require any history, as it just sets

the system to a newly computed proper system state. Fi-

nally, error compensation can be used to ensure a correct

result of a given request by using fault masking or error

correction mechanisms. Fault masking can be achieved by

using multiple implementations for the processing of the

same requests. After termination of request processing, a

majority decision finally determines the result to be consid-

ered correct. Error correction uses informational redun-

dancy to compute a correct value from the erroneous value

plus additional error correction information accompanied

with this value.

Additionally to decrease the MTTR (meantime to repair)

the concepts of Recovery Oriented Computing [Roc02]

may be applied.

To be able to create fault tolerant service systems the

employed services have to implement a defined interface

that enables the runtime monitoring, controlling and reset-

ting of the service. In some cases transaction-oriented inter-

service communication schemes are of interest in order to

support efficient backward recovery mechanisms. Since the

system state of industrial applications, however, is often

connected with physical state components of the technical

system, in many cases generic backward recovery mecha-

nisms are not appropriate and adequate service-specific

forward recovery operations have to be introduced during

service design.

Fig. 2. Service layers

indin06-udo-060602-1-draft.doc

4

V. ABSTRACT POLICIES FOR INDUSTRIAL SERVICE-

ORIENTED SYSTEMS

The policy- and model-based management of reliable in-

dustrial systems shall be exemplified by means of a service

oriented industrial control system that was developed by a

group of students in Dortmund [Bri06]. The system con-

trols a conveying system and can flexibly adapt to changing

conveying system states. Basically it applies Web Service

and UPnP technology in order to achieve modularity, flexi-

ble interactions and automatic discovery.

The hierarchical architecture of the distributed control

system (see Fig. 2) has four layers:

� On the lowest layer, a series of device managers (DMs)

control the different components of the conveying elements.

Each DM offers services for the basic control of a corre-

sponding technical device (e.g. switch motor on, set speed

frequency). Additionally an event interface is offered to

subscribe to low level hardware events (e.g. the activation

of light-barrier sensors, temperature warning of a transport

motor).

� On the second layer, for each conveying element one

system manager (SM) is instantiated which controls the op-

eration of the conveying element. SMs use the services of

the DMs and provide services which correspond to the

function of a conveying element as a whole (e.g. set switch

direction).

� On the third and fourth layer the package managers

(PMs) and the order managers (OMs) are located. A PM is

responsible for the correct routing of packets through the

system and is only created for routing decision points, e.g.

switches. The OMs are only instantiated at in- or outports

where orders can be injected or removed from the con-

veying system.

� On the uppermost layer a set of redundant supervi-

sors are instantiated that are responsible for the initializa-

tion, monitoring and control of the whole system. The su-

pervisors represent the client applications of the OM and

PM services. At startup one main supervisor is elected.

Fig. 3 shows a small section of the conveying system

consisting of two parallel conveying elements each with a

two way track switch at its ends. We assume that this sub-

system is required to be 98% available all time during

normal operating hours. During service intervals its avail-

ability can be reduced to 90%. In our approach these re-

quirements are represented by the application-near high-

level management policies.

The high-level management policies used in the topmost

model layer solely show abstract management objectives

and represent corresponding requirements:

� Functional requirements are represented by tuples of

the form: <accessmode, object>. Such a tuple denotes that an ab-

stract function access mode of the abstract object has to be

implemented by the modeled system. The connection be-

tween the object and the access mode is established via a

functional obligation element. The conception follows the

well-known approach of role-based access control (RBAC)

[San96].

� Non-functional requirements are represented similarly

to service level agreements (SLAs) by additional numerical

attributes to the functional obligations.

Each requirement can be extended to reflect modalities

applying conceptions of the generalized role-base access

control model (GRBAC) [Moy01], which additionally to

RBAC’s subject roles introduces environment and system

roles representing states of the managed system’s environ-

ment and of its components (e.g. roles “when power is

low”, “under high load”).

Fig. 4 depicts the high level model of our application

scenario. The system’s conveying hardware is abstracted to

a single object on this layer. The access mode Transport

describes the abstract operation of this use case. Both ele-

ments are linked with the functional obligation element

Normal Transport that defines the functional requirement

for the system. Additionally the functional obligation is at-

tributed by two different availability requirements, each de-

fining abstract availability requirements during different pe-

riods of operation.

Fig. 5. Services & resources

Fig. 4. Topmost model layer

Fig. 3. Example conveying system

indin06-udo-060602-1-draft.doc

5

VI. SERVICE POLICIES

The middle model layer represents the managed system

and management policies in a more implementation near,

but still abstract service-oriented view. Here, each tuple

of the topmost level is refined by a set of implementing

service associations.

Fig. 5 shows the service policies layer. The Transport

access mode is refined to a service that offers the required

functionality. The abstract object subsuming the convey-

ing hardware of the system is refined to abstract re-

sources; one abstract resource for each real hardware

element. As the control service cannot access the hard-

ware directly it depends on device-services that provide

functionality to control the devices. This dependency and

the required services are depicted on the left side of the

model. On the right side of the model one can see the

automatically derived service provision obligations and

their accompanied availability requirements. These ele-

ments are computed from the functional obligations, their

associated availability requirements and the implementing

services that provide the modeled access mode (additional

availability requirements are hidden in the figure due to

readability reasons). On this layer the availability require-

ments are still abstract.

VII. DEVICE POLICIES AND POLICY ENFORCEMENT

The lowest model layer finally represents the concrete im-

plementation architecture of the managed system. Client-

subjects and services of the middle layer are refined by sets

of implementing client- and server processes residing on

networked devices. Accordingly, the managed system ap-

pears as a diagram of processes, physical resources, devices

and network links. Moreover the lowest model layer is ex-

tended by the components of the concrete management sys-

tem (e.g. watchdog processes, monitoring and control ele-

ments). To gain information about the availability of system

components like hosts, processes or resources these ele-

ments have to be augmented by availability assumptions.

These assumptions are given in the terms of the MTTF

(meantime to failure), MTBF (meantime between failures)

and MTTR (meantime to repair) of the associated compo-

nent. The management policies of the lowest layer have the

character of low-level management policies and directly

correspond to the control parameters of the management

system components (e.g. restart condition thresholds, moni-

toring periods).

Fig. 6 depicts the low level model of the conveying sys-

tem. The Transport control service is implemented by a

process running on a dedicated host. Both process and host

are associated to specific availability assumptions. The de-

vice-services are organized similarly despite the fact that

one industrial pc (IPC) hosts two processes and is also con-

nected to the conveying hardware to be controlled. The lat-

ter has also to be extended by the definition of a correlated

availability assumption for the complete device (including

all single parts like motors, sensors, etc).

 The low level model introduced so far does not contain

any additional policy or management elements. These ele-

ments are automatically determined from the policies de-

fined on the middle layer and the availability assumptions

defined on the lower layer. If the refinement process detects

that the required availability is already provided by the sys-

tem components, namely processes, hosts and resources, it

would not add any additional management components or

policy descriptions. Nevertheless if the system does not sat-

isfy the requirements inherently the low-level system model

is augmented by management components and low-level

policy definitions. In the case that the required availability

cannot be assured due to missing hardware redundancy or

awkward service dependencies the refinement functions

create a warning.

Fig. 7. Management components & policies

Fig. 6. Services, processes & hosts

indin06-udo-060602-1-draft.doc

6

Fig. 7 exemplifies the extension of the model for IPC

A/B that is responsible for the control of track switch A and

conveying element B. To increase the overall availability

level the device-service processes are observed by process

management agents that are able to monitor and control

(e.g. start, stop, configure) the process. Through the created

management policies the agents have information about the

normal operational behavior of the service processes and

thus can restart the process if necessary. Additionally the

IPC is monitored and controlled by a host management

agent that monitors critical host parameters and acts on be-

half of the related host management policy. These policies,

either host- or process management policy are automati-

cally created from the information provided in the low-level

system model and the defined high-level policies on the up-

per two layers of the model. The derived low-level policy

descriptions which are deployed on the host- and process

management agents contain the definition for the behavior

of the management agent and the observed process or host.

Typical low-level policies of our example are:

� The response time of process requests is monitored. If

the response time exceeds the threshold of 2 seconds, the

process has to be restarted. This specific time span can be

computed from the MTTR and MTBF values of the process

and the service reliability requirements.

� The IPC onboard controller has to monitor the fre-

quency of transmission errors of the data connection to the

conveying element. If that frequency exceeds the threshold

of 50, an IPC reset has to be issued.

Moreover, the low level policies reflect convenient for-

ward recovery and compensation mechanisms for faults and

failures of technical resources. For instance, a failure of

conveying element B has to result in a disintegration of B

and a corresponding dynamic adaptation of the packet rout-

ing mechanisms.

Consequently, the policy refinement process is not lim-

ited to the insertion of dedicated management components

but furthermore includes the creation of additional (func-

tional) redundancy by process replication, creation of proc-

ess groups and the introduction of application-specific for-

ward error recovery mechanisms.

VIII. CONCLUDING REMARKS

The approach of policy-controlled self-management and

its model-based and tool-assisted implementation have been

outlined with emphasis on the hierarchical policy represen-

tation of high-level reliability requirements and correspond-

ing low-level control policies for fault tolerance mecha-

nisms. Most parts of the development have been performed

in the course of the SIRENA [Sir04] project and during a

comprehensive student project [Bir06] which both have

been completed in March 2006. Currently we test our effi-

cient Micro Java based implementation of the Web Ser-

vices for Devices stack and plan the application of Micro

Java devices as hosts for self-management components

(particularly policy enforcement components). Current re-

search investigates the relationships and dependencies be-

tween application service patterns, fault tolerance mecha-

nisms and policy schemes in order to develop comprehen-

sive policy definition and refinement procedures.

IX. ACKNOWLEDGMENT

The work described herein was funded by the German

Federal Ministry of Education and Research (BMBF)

within the ITEA-SIRENA project (01ISC09G).

REFERENCES

[Box04] D. Box, F Curbera, M. Hondo et al., “Web Services Policy

Framework (WS-Policy). Version 1.1” , http://www-128.ibm.com/

developerworks/webservices/library/specification/ws-polfram/, Sept.

2004.

[Bri06] B. Brill et al., “Management of cooperating Web Services.” Re-

port on the 1-year / 12-student project PG475 (in German),

http://www.roastedkit.org, Fachbereich Informatik, Universität Dort-

mund, 2006.

[Cim03] DMTF, CIM Policy Model CIM Version 2.7 – White Paper,

DMTF Inc., http://www.dmtf.org/standards/published_documents#

whitepapers, Jun. 2003.

[Ech90] Klaus Echtle, Fehlertoleranzverfahren, Springer, ISBN-3-

54052-680-3, 1990.

[Gan03] A. G. Ganek, T. A. Corbi, “The dawning of the autonomic com-

puting era. “ IBM Systems Journal, Vol. 42, No. 1, 2003.

[Heg99] H.-G. Hegering, S. Abeck, and B. Neumair, “Integrated Man-

agement of Networked Systems”, Morgan Kaufman, 1999.

[Ilk05] S. Illner, H. Krumm, A. Pohl, I. Lück, D. Manka, and T. Sparen-

berg, “Policy Controlled Automated Management of Distributed and

Embedded Service Systems.” In Proc. IASTED Int. Conf. on Parallel

and Distributed Computing and Networks (PDCN 2005), Innsbruck,

pp. 710-715, 2005.

[Ill04] S. Illner, A. Pohl, H. Krumm, “Security Service Adaptation for

Embedded Service Systems in Changing Environments.” In Proc. 2nd

IEEE Int. Conf. on Industrial Informatics (INDIN04), Berlin, Ger-

many, IEEE Computer Society Press, 2004, pp. 457-462.

[Ilp05] S. Illner, A. Pohl, H. Krumm, I. Lück, D. Manka, Th. Sparen-

berg, “Automated Runtime Management of Embedded Service Sys-

tems Based on Design-Time Modeling and Model Transformation.” In

Proc. 3rd IEEE Int. Conf. on Industrial Informatics (INDIN05),

Perth, Australia, IEEE Computer Society Press, Catalogue Number:

05EX1057C, Paper PD-001854, 2005.

[Jam05] François Jammes and Harm Smit, “Service-Oriented Paradigms

in Industrial Automation.” In IEEE Transactions on Industrial Infor-

matics, Vol. 1, No. 1, pp. 62-70, 2005.

[Jam05a] Jammes, F., Smit, H., Lastra, J.L.M., Delamer, I.M, “Orches-

tration of Service-oriented Manufacturing Processes.” In Lo Bello, L

& Sauter, T. (eds.). Proc. IEEE Int. Conf. on Emerging Technologies

in Factory Automation (ETFA2005), Cernobio, Italy, pp. 617-624,

2005.

[Jam05b] F. Jammes, H. Smit, “Service-Oriented Architectures for De-

vices – the SIRENA View.” In Proc. 3rd IEEE Int. Conf. on Indus-

trial Informatics (INDIN 2005), Perth, Australia, IEEE Computer So-

ciety Press, Number: 05EX1057C, Paper PD-001865, 2005.

[Kem05] Bernhard Kempter and Vitalian A. Danciu, “Generic Policy

Conflict Handling Using a priori Models.” In J. Schönwälder and J.

Serrat (Eds.): DSOM 2005, Springer Verlag, LNCS 3775, pp. 84–96,

2005.

[Lob99] Lobo, Jorge, Bhatia, Randeep, Naqvi, Shamim, “A Policy De-

scription Language.” In Proc. 16th Nat. Conf. on Artificial Intelli-

gence (AAAI-99), pages 291– 298, MIT Press, 1999.

indin06-udo-060602-1-draft.doc

7

[Lue02] I. Lück, S. Vögel, H. Krumm, “Model-Based Configuration of

VPNs.” In 8th IEEE/IFIP Network Operations and Management

Symposium (NOMS2002), pages 589-602, Florence, April 2002. IEEE

Computer Society Press.

[Mof93] Moffet, Jonathan, Sloman, Morris, “Policy Hierarchies for Dis-

tributed Systems Management.” IEEE Journal of Selected Areas in

Communications, 11,9, 1993.

[Moy01] Matthew J. Moyer and Mustaque Ahamad, “Generalized Role-

Based Access Control.” Proc. 21st Int. Conf. on Distributed Comput-

ing Systems, Mesa, USA, pp. 391–398, 2001.

[Oas05] Oasis, “An Introduction to WSDM.” Committee Draft 1, Sep.

2005, http://www.oasis-

open.org/committees/download.php/14351/cd-wsdm-

introduction_v3.doc

[Roc02] Patterson et al, “Recovery-Oriented Computing (ROC): Motiva-

tion, Definition, Techniques, and Case Studies.” UC Berkeley Com-

puter Science Technical Report UCB//CSD-02-1175, March 15, 2002

[San96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman,

“Role-based access control models.” IEEE Computer 29 (2), pp. 38-

47, 1996.

[Sir04] SIRENA (Service Infrastructure for Real-time Embedded Net-

worked Applications), http://www.sirena-itea.org, 2004

[Slo94] Sloman, Morris, “Policy Driven Management for Distributed

Systems.” Journal of Network and Systems Management, 2(4), p.

333-360, 1994.

 [Ver02] Verma, D., “Simplifying Network Administration using Policy

based Management.” IEEE Network, March 2002.

[Wes01] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B.

Quinn, S. Herzog, A. Huynh, M. Carlson, J. Perry, S. Waldbusser,

“Terminology for Policy-Based Management.” Request for Comments

3198, Internet Engineering Task Force, November 2001.

[Wie94] Wies, Rene, “Policies in Network and Systems Management –

Formal Definition and Architecture.” Journal of Network and Systems

Management, Plenum Publishing Corp., 2(1), pp. 63-83, 1994.

