
WS4D: SOA-Toolkits making embedded
systems ready for Web Services

Elmar Zeeb1, Andreas Bobek1, Hendrik Bohn1, Steffen Prüter1, Andre Pohl2,
Heiko Krumm2, Ingo Lück3, Frank Golatowski1, and Dirk Timmermann1

1 Institute of Applied Microelectronics and Computer Engineering, University of
Rostock (elmar.zeeb, andreas.bobek, hendrik.bohn, steffen.prueter,

frank.golatowski, dirk.timmermann)@uni-rostock.de
2 Dpt. CS, Computer Networks and Distributed Systems, University of Dortmund

(krumm, pohl)@ls4.cs.uni-dortmund.de
3 Materna Information & Communications, Dortmund, Germany

ingo.lueck@materna.de

Abstract. The usage of the Service Oriented Architecture (SOA)
paradigm currently changes the view on many enterprise applications.
SOA allows the creation of modular and clearly defined software archi-
tectures that ensure a high grade of interoperability and reusability. As
even small, resource-constraint networked devices get more and more
powerful it is common sense to try to adopt the SOA paradigms to
embedded device networks. This idea is substantiated in the specifica-
tion of the Devices Profile for Web Services (DPWS), a standard that
uses the primitives of the Web Services Architecture (WSA) to create a
framework for interoperable and standardized communication between
embedded devices. This paper introduces the WS4D initiative, a project
that tries to provide a common open source platform for using DPWS
in different environments. As a basis, we have developed three DPWS
stacks that will be released as open source.

Key words: WS4D, SOA, Open Source, Web services, DPWS, Embedded
systems

1 Introduction

The increasing complexity of device networks consisting of up to thousands of
devices is demanding new technologies for simple device interaction and inter-
operability. Service-Oriented Architectures (SOA) [DJMZ05] firstly addressed
this issue for software components where Web services [Wor04] have achieved
the highest market penetration. SOAs describe standards for the description,
integration, announcement, discovery and usage of components and their func-
tionality (services) in a network.

In 2004 a first proposal for the Devices Profile for Web Services (DPWS) was
announced [Mic06]. DPWS enables devices being compatible to Web services



2 Zeeb et al.

and is part of the current Microsoft Windows platform Vista. The European
R&D ITEA project SIRENA (Service Infrastructure for Real-time Embedded
Networked Applications) ([SIR06, BBG06]) has developed some of the first
DPWS software toolkits for embedded systems worldwide covering a wide range
of platforms and application areas.

When the SIRENA project ended in the beginning of 2006 the WS4D initia-
tive was founded by some partners to follow up the development of the differ-
ent DPWS toolkits, to obtain their interoperability and to bring them to open
source.

This paper introduces the Web Services for Devices (WS4D) initiative, their
developments and common goals. It is organised as follows: After giving an
overview of DPWS in section 2 and looking at some related work in section 3,
section 4 presents an introduction to the WS4D initiative. The toolkits men-
tioned before are described in section 5. The paper ends with some conclusions
in section 6.

2 Devices Profile for Web Services

The Devices Profile for Web Services (DPWS) was developed to enable secure
Web service capabilities on resource-constraint devices [Mic06]. It features se-
cure exchange of messages with Web services, dynamic discovery and description
of Web services, and subscribing to, and receiving events from a Web service.
DPWS can be used for inter machine communication. However, the latter re-
quires the devices to have an implemented peer functionality, a specific DPWS
client implementation, to use a correspondig service hosted on another device.

IPv4 / IPv6 / IP Multicast

UDP
HTTP

TCP

SOAP−over−UDP, SOAP, WSDL, XML Schema

WS−Security, WS−Policy, WS−Addressing

WS−Discovery WS−Eventing
WS−MetadataExchange/

WS−Transfer

Application Specific Protocols

Fig. 1. The Devices Profile for Web Services protocol stack

As shown in Fig. 1 DPWS bases on well known protocols and several
Web service specifications. It employs similiar messaging mechanisms as the
Web Services Architecture (WSA) with restrictions to complexity and message
size ([Mic06, ZBBG07]). On top of the low level communication foundations like
IP- Uni- and Multicasting, TCP and HTTP it uses SOAP-over-UDP, SOAP, and



WS4D: SOA-Toolkits making embedded systems ready for Web Services 3

XML Schema for the actual information exchanges. WS-Policy, WS-Addressing
and WS-Security are on top of the messaging layer. WS-Policy is used to ex-
change and negotiate policies and parameters required for service usage. WS-
Addressing separates the SOAP messaging layer from its close binding to HTTP
as defined in the SOAP specification. It introduces the concepts of message in-
formation headers and endpoint references making service users, providers and
transmitted messages uniquely identifiable and addressable. The WS-Security
specification defines mechanisms for secure communication leveraging standards
like XML-Encryption, XML-Signature and Secure Sockets Layer (SSL).

DPWS specifies further mechanisms for ad-hoc device discovery, device and
service description and eventing. Ad-hoc device discovery is based on WS-
Discovery, SOAP-over-UDP and IP-Multicast. Devices can advertise their ser-
vices to the network and clients can probe a network for specific devices. The
devices describe their characteristics and capabilities (in form of services hosted
by the device) using the Web Service Description Language (WSDL) – as known
from the WSA – which can be used by service clients to identify and bind to
particular service interfaces. It can also be used to find out where the ser-
vices actual communication endpoints reside. Finally, the DPWS also contains
a publish-subscribe mechanism (WS-Eventing) for services acting as an event
source and sending events to subscribed clients.

3 Related work

Microsoft as one of the authors of the DPWS specification ships its latest Win-
dows version with an implementation of the DPWS protocol stack, which is
called WSDAPI. This API is part of the new PNP-X subsystem which allows
locally installed devices and such attached through the network (e.g. by UPnP
or DPWS) to be accessed and used in a uniform way [Mic07].

Furthermore, Schneider Electric (F) – project coordinator of the SIRENA
project – has developed the first implementation of a DPWS stack for embed-
ded devices in the SIRENA project [JMS05]. The WS4D initiative is in contact
with Schneider Electric to assure compatibility. The SIRENA follow-up project
– Service Oriented Device and Delivery Architecture (SODA) – is currently
developing a toolkit around the Schneider stack to improve manageability, or-
chestration and security [SOD07].

4 The WS4D Initiative

The Web Services for Devices (WS4D) [WS407] initiative was established by
academic and industrial partners in the middle of 2006 for several reasons. Be-
fore WS4D all partners were actively involved in the award-winning European
R&D project SIRENA which ended in spring-time 2006. One of the main chal-
lenges in SIRENA was establishing a software infrastructure in which embed-
ded, networked devices can be integrated. The devices should be self-contained



4 Zeeb et al.

and able to communicate with each other. As one result some prototypes im-
plementing earlier versions of DPWS were developed.

The WS4D initiative can be considered as a non-profit follow-up project to
preserve and extend the SIRENA results and also to maintain the collabora-
tion between the partners. But the main aspect which is followed by deploying
WS4D is building up an open community that actively participates in further
development processes:

1. Improving available stacks by providing them as open source software on
an open platform including bug tracking and documentation issues,

2. Developing test suites, and
3. Promoting standardization process, e.g. delivery of standardized devices and

basic services such as management services.

By putting these items into action we expect interoperable stack solutions.
Currently, the Web services protocol family comprises more than 40 speci-

fications which again make extensive use of the XML protocol family. Next to
these main standards there are binding protocols which combine WS protocols
with other specifications (e.g. transport) or with themselves. The plethora of
Web services protocols, the participation of many different initiatives, the still
evolving standardization process, redundancy between and inconsistency within
these protocols result in interoperability problems.

Profiles are means for restricting certain specifications and setting up a
working subset of given protocol families (q.v. profiles in the Bluetooth protocol
family). In this respect DPWS can be considered as a first step in developing
an interoperable specification for SOA-enabled devices. However this is a first
step and real interoperability can not be achieved until the profile is practically
applied.

In this context WS4D considers to be the second step. In a nutshell, the over-
all objective of WS4D is ensuring interoperability between various implemen-
tations of the Devices Profile on different platforms and different programming
languages by the help of an active and open community.

5 Toolkits

In the following sections the three WS4D Web services development toolkits
are introduced: WS4D-gSOAP, WS4D-Axis2 and WS4D-JavaME. These toolk-
its will be published under LGPL soon and will be available on the WS4D
website [WS407].

The WS4D-gSOAP and WS4D-Axis2 stacks are maintained by the Univer-
sity of Rostock and the WS4D-JavaME stack is maintained by the University
of Dortmund and Materna Information & Communications [Mat07].



WS4D: SOA-Toolkits making embedded systems ready for Web Services 5

gSoap Runtime

Addressing

DPWS plugin Other

gSoap

Plugins

Application Specific Hosted Services

Generated

Code

DiscoveryEventingDescription

Generated

Code

Code

Generator

WSDL to

gSoap

Code

Generator
Embed WSDL 

& Metadata

Run TimeDesign Time

g
S

o
a
p

D
P

W
S

Fig. 2. WS4D-gSOAP toolkit

5.1 WS4D-gSOAP

WS4D-gSOAP is an extension of the well known gSOAP Web services toolkit,
a toolkit for building SOAP-based Web services with C/C++ developed by
Robert A. van Engelen [vE07]. It is designed to develop small footprint and
high throughput Web services. The toolkit consists of a development and a
runtime environment.

gSOAP offers code generation tools for implementing Web services. gSOAP
has defined its own service description language that is based on C syntax. This
description is saved in special gSOAP files that are similar to C header files with
annotations. To complete the Web services design flow the toolkit also includes
a tool to translate WSDL files into gSOAP files.

The second part of the development environment is the gSOAP code gener-
ator. It generates XML schema to C data binding as well as stub and skeleton
code for a specific gSOAP service description. The XML schema to C data
binding creates a mapping from every type of the used XML schema definitions
to a C type structure and generates functions for the marshalling and demar-
shalling. The skeleton and stub code generator finally maps WSDL operations
to C functions.

The runtime part of gSOAP consists of the generated code and the gSOAP
runtime. The gSOAP runtime consists of functions for the service developer and
functions used in the generated code.

WS4D-gSOAP uses a similar workflow as gSOAP (see Fig. 3). To create a
DPWS device a developer has to specify a WSDL description of the services on a
device and the device’s metadata. The WSDL files are used for code generation
in gSOAP’s typical way as described in the last paragraph. The device metadata
is used to generate code for service setup and assignment of model metadata and
device characteristics. With the resulting code a developer can concentrate just
on the implementation of the functionality of the services hosted by a device.

As shown in Fig. 2 the WS4D-gSOAP toolkit uses gSOAP’s plug-in mech-
anism to implement WS-Addressing, WS-Discovery, WS-MetadataExchange /
WS-Transfer and WS-Eventing on top of gSOAP. WS4D-gSOAP supports three
different roles for an endpoint implementation that can be switched at compile



6 Zeeb et al.

WSDL

Metadata
Code

Generator

WSDL

To

gSOAP

Code

Generator

Annotated

Headerfile

Skeleton

Data

Binding

Stub

Metadata

XML−Data C−Code

Fig. 3. WS4D-gSOAP code generation

time: device, client and peer. With the device role an endpoint implements the
device side of the specification. The client role is used to create code for a Web
service client, respectively. The peer role has to be used when both client and
device are about to be integrated in one application.

WS4D-gSOAP offers multi-platform support such as the Linux i386, Windows-
native, Windows-cygwin and embedded Linux (FOX Board [Acm07] and Nokia
Maemo [Mae07]) platforms. To develop devices a typical GNU software devel-
opment toolchain can be used. Developers preferring integrated development
environments can use Visual Studio 8.0 on Windows or Eclipse on other plat-
forms.

5.2 WS4D-Axis2

Design Time

*.wsdl

*.device
*.model

Runtime

Addressing

Metadata
Transfer
Discovery
Eventing
modules services

Discovery
service 1
service ...

transport

HTTP
TCP
...A

x
is

2
D

P
W

S

WSDL to Java
Code Generator

Extension

WSDL to Java
Code Generator

SOAP over
UDP

Fig. 4. Axis2 Architecture and DPWS Extensions

The second DPWS stack is based on Axis2 being the successor of Axis – a
Java-based SOAP processor for Web services [Apa07]. As with all projects of
the Apache group Axis2 is also available as an open source software with an
Apache licence.

Axis2 supports SOAP 1.1 as well as SOAP 1.2, offers several transport con-
nectors such as HTTP, TCP, JMS and SMTP and comes with a WS-Addressing
enabling module. So by default asynchronous message exchange is supported.



WS4D: SOA-Toolkits making embedded systems ready for Web Services 7

Axis2 is a modular built SOAP stack in which implementations of additional
Web services specifications can be easily plugged in via modules.

By using Axis2 we can bridge the two worlds of embedded devices and
application development at the enterprise level without abandoning existing
solutions and customs: Axis2 runs on J2SE, an Eclipse plug-in is available
for code creation, and further lots of plug-ins implementing other WS spec-
ifications such as WS-Security, WS-ReliableMessaging, WS-Coordination and
WS-AtomicTransaction are available or on the way.

Since the engine is Java-based several platforms (Windows, Linux etc.) are
targeted. Services are deployable in standalone mode or under servlet container
(default) such as Tomcat.

WS4D-Axis2 is a stack solution on top of Axis2 as depicted in Fig. 4 for
writing primarily clients for controlling DPWS enabled devices, e.g. for man-
agement tasks. WS4D-Axis2 comes with several modules (plug-ins) which are
independent of each other: SOAP over UDP, Discovery, Eventing and DPWS. It
offers three main APIs for searching for, subscribing to and controlling devices.

Since WS4D-Axis2 runs on J2SE it is not targeted for embedded devices,
but it can be used for device management, discovery proxies and other rich
client implementations.

5.3 WS4D-JavaME

The Java 2 Micro Edition is targeted at small and resource constraint devices
such as mobile phones and PDAs (e.g. running the Mobile Information Device
Profile (MIDP)) [Sun07]. Additionally, it defines an environment (Connected
Device Configuration) for more capable devices like set-top boxes or other high-
end embedded devices. The WS4D-JavaME stack is based on the Connected
Limited Device Configuration, the smallest subset of JavaME configurations
and can thus be used on all JavaME platforms and even on Java 2 Standard
editions using platform dependent toolkits.

...
core

client watchdog presentation security

explorer

Fig. 5. Modules of the WS4D-JavaME stack

The main packaging of the stack is depicted in Fig. 5. The core package
contains all code that is necessary to create a DPWS device with one or more
services. This device is discoverable via WS-Discovery[Mic05] mechanisms and
can be used as an event-source. All packages on top of the core package add ad-
ditional functionality, which is not mandatory for normal, self-contained DPWS



8 Zeeb et al.

devices. The client package adds functionality to find remote devices and ser-
vices in the network and to invoke the operations defined in the WSDL. Adding
this module permits a service to act as a client and to use remote services. The
watchdog module contains a software watchdog that can be used to check for
dead threads and service processings. The presentation package subsumes the
classes that are used to create a rich featured presentation URL for the device
which can be controlled with any web-browser like Firefox or Opera and fea-
tures the complete usage of deployed devices and services as looking at the
device’s metadata or invoking service operations. The last module worth to be
mentioned in this article is the security module. This module implements the
subset of security features of WS-Security specified in the DPWS specification.
It uses the cryptographic API of the Java 2 Standard Edition. Thus security is
currently not available for Java Micro Edition Devices.

On top of this framework we have implemented a testing and debugging tool
called DPWS-Explorer which can be used with any DPWS featured device. The
DPWS-Explorer is able to listen for devices’ discovery messages (Hello, Bye)
and is able to actively search for devices. If a device is discovered, the tool
gets the metadata information from the device and creates a user interface for
accessing and using the hosted services’ operations. The usage of the eventing
mechanisms is also supported. Additionally one can log all network conversation
for later analysis.

HTTPServer UDPServer

SOAPConnectionHandler

HostingService

HostedService HostedService
Eventing

Dispatcher

...

Fig. 6. The WS4D-JavaME architecture

The architecture of the framework is shown in Fig.6. The framework commu-
nicates via the HTTPServer and UDPServer classes with the external network.
All incoming traffic is passed to the SOAPConnectionHandler which parses and
analyses the content of incoming messages. On successful completion the gath-
ered data is forwarded to the Dispatcher which in turn dispatches the message
to the targeted service or device.

Creating a new device with the WS4D-JavaME framework is a bit different
compared to the other implementations. Most frameworks use a code generator
to create the code frame for the device implementation that at least requires



WS4D: SOA-Toolkits making embedded systems ready for Web Services 9

the WSDL of the services to be hosted by the device. In the WS4D-JavaME
framework one does not have to deal with WSDLs or device descriptions nec-
essarily, as you create your device only by programming in the framework. One
can create a new service by extending the HostedService class, adding op-
erations with arbitrary parameters to this service and finally add an instance
of this service to an extended HostingService instance. The services’ WSDL
and the device metadata are generated on demand, when a client asks for it.
The client package also includes the code to create proxy objects for remote
services from a given WSDL. Thus the framework is very dynamic and DPWS
devices and services can be built-up on-the-fly at runtime.

6 Conclusion and future work

In this paper we introduced the WS4D initiative, i.e. its purpose, the tools
which are currently in progress and upcoming challenges. The main objective
is building up an open community which practically applies the Devices Profile
for Web Services to attain interoperability.

We will further foster the standardization process. One of the next tasks
will be a proposal for device templates. Such template system could standardize
certain device types and provide similar advantages (e.g. easy code generation)
like device templates in the UPnP technology.

Acknowledgments

This work has been funded by German Federal Ministry of Education and
Research (BMBF) under reference number 01—SF11H.

References

[Acm07] Acme Systems. http://www.acmesystems.it, 2007.
[Apa07] Apache Axis2 / Java. http://ws.apache.org/axis2/, 2007.
[BBG06] H. Bohn, A. Bobek, and F. Golatowski. SIRENA - Service Infrastructure for

Real-time Embedded Networked Devices: A service oriented framework for
different domains. In International Conference on Networking (ICN), 2006.

[DJMZ05] W. Dostal, M. Jeckle, I. Melzer, and B. Zengler. Service-orientierte Ar-
chitekturen mit Web Services. Elsevier, 2005.

[JMS05] F. Jammes, A. Mensch, and H. Smit. Service-oriented device communications
using the devices profile for web services. In 3rd International Workshop
on Middleware for Pervasive and Ad-Hoc Computing (MPAC05) at the 6th
International Middleware Conference, 2005.

[Mae07] Maemo: Development Platform for Nokia Internet Tablet Products. http:

//www.maemo.org, 2007.
[Mat07] Materna Information & Communications. http://www.materna.com, 2007.



10 Zeeb et al.

[Mic05] Microsoft. Web Services Dynamic Discovery (WS-Discovery), 2005. http:

//schemas.xmlsoap.org/ws/2005/04/discovery/.
[Mic06] Microsoft, Intel, Ricoh, Lexmark. Devices Profile for Web Services, 2006.

http://schemas.xmlsoap.org/ws/2006/02/devprof/.
[Mic07] Microsoft Rally. http://www.microsoft.com/rally, 2007.
[SIR06] SIRENA: Service Infrastructure for Real-time Embedded Networked Appli-

cations. http://www.sirena-itea.org, 2006.
[SOD07] SODA consortium. SODA - Technical Framework Description, 2007. http:

//www.soda-itea.org/Documents/AllDocuments/.
[Sun07] Sun Microsystems. Java 2 Micro Edition, 2007. http://java.sun.com/

javame/index.jsp.
[vE07] R. A. van Engelen. gSOAP, 2007. http://www.cs.fsu.edu/~engelen/soap.

html.
[Wor04] World Wide Web Consortium (W3C). Web Services Architecture, 2004.
[WS407] WS4D: Web Services for Devices. http://www.ws4d.org, 2007.
[ZBBG07] E. Zeeb, A. Bobek, H. Bohn, and F. Golatowski. Service-oriented archi-

tectures for embedded systems using devices profile for web services. In 2nd
International IEEE Workshop on SOCNE07, 2007.


