

Service-orientation and Flexible Service Binding in

Distributed Automation and Control Systems

Andre Pohl and Heiko Krumm

University of Dortmund, Germany

(pohl, krumm)@ls4.cs.uni-dortmund.de

Felix Holland, Ingo Lück

and Franz-Josef Stewing

Materna Information & Communications

(felix.holland, ingo.lueck,

franz-josef.stewing)@materna.de

Abstract

An experimental study shows the feasibility of

service-oriented architectures for industrial

automation and control systems even with respect to

lower, real-time dependent control functions. For that

purpose, general SOA-guidelines were refined in order

to cover the distribution of control functions between

services and the lay-out and management of device-

based sensor, actor and control services. Particular

emphasis was placed on the dynamic lease-based

binding of services which on the one hand provides

flexible and loose coupling of system components but

on the other hand has to ensure reliable

communication and cooperation. The guidelines were

applied to the experimental implementation of a

manufacturing cell control system using a real-time

version of the Java Runtime Environment. The Device

Profile for Web Services (DPWS) was used as basic

infrastructure technology. Test and evaluation were

performed under distributed simulation of technical

processes and devices.

We shortly describe DPWS, present the architecture

guidelines, outline the experimental control system

implementation, and report on its evaluation.

1. Introduction
Today, many modern business applications adhere to

the paradigms of service orientation and service

oriented architectures in order to create loosely

coupled, modular software systems, easy to maintain

and to extend. In the field of automation and control

systems, SOA-based flexibility is of even more interest,

because it contributes to substantial reductions of

installation and setup costs [1]. These costs are of

particular importance since manufacturing plants again

and again have to be adapted to new products resulting

in changes of the technical equipment and the process

flows performed. Additional reconfigurations are

applied occasionally in the course of repair measures in

order to bypass defect equipment and to avoid

expensive production downtimes.

Despite the desired flexibility, however, there is a

needs for stable and reliable operation phases since the

efficiency of the production equipment usually depends

on steady operational conditions. For a certain

manufacturing operation usually an ensemble of

suitable devices, machines and transport equipment is

necessary. The members of the ensemble must initially

be configured in harmony with each other and

thereafter be available for a certain minimal period of

operation time, which may only be aborted due to

exceptional circumstances. The members of the

ensemble have to be allocated before configuration,

some of them because they can only be used

exclusively, others may be sharable but have to allow

for the additional load.

In the service-oriented setting this means, that a client –

which may be either a control application or a

compound service – must be able to search, find and

allocate a suitable ensemble of used services. Since a

used service may already have other obligations, it may

not be disposable and deny a current allocation request.

Then, one member of the planned ensemble fails, and

the ensemble as a whole is currently not useful.

Therefore, the client shall be able to withdraw the other

allocation requests and look for alternative ensembles.

In order to fulfill these functional requirements of

temporary and atomic ensemble allocation we extended

the approach of lease-based allocation [2] by

introducing an explicit reservation phase in a way that

reservation and allocation perform a two-phase

commitment.

Moreover we transposed the architecture of

hierarchical control systems to the field of service

systems using the platform the Device Profile for Web

Services (DPWS) as basic infrastructure technology

supporting the communication between devices via

service interfaces as well as the exploration and

binding of services. The application of the resulting

architecture guidelines and the usage of the lease-based

allocation were exemplified by means of a production

cell scenario using a real-time Java Runtime

Environment.

In the sequel, we outline DPWS and its application to

service-oriented industrial applications. Referring to

the general structure of automation and control

systems, the architectural principles of service-oriented

control systems are described. Sect. 5 introduces the

flexible, but reliable lease-based service binding. Sect.

6 presents the application scenario and reports on its

implementation. Sect. 7 shortly enters into validation

aspects before concluding remarks close the

contribution.

2. Service Oriented Architectures
In SOA, interoperability of different platforms is

established through the definition of common

communication protocol and message exchange

standards. But not only in enterprise domain software

service-orientation is a feasible way of creating flexible

software systems, as through the growth of computing

power of embedded devices these paradigms are also

applicable to embedded software solutions. Universal

Plug’n’Play (UPnP) [3] was the first specification of a

service oriented infrastructure to be used in embedded

application scenarios, using SOAP and HTTP as a

basic communication layer and providing mechanisms

for service discovery, action invocation and event

based communication schemes. Its successor, the

Devices Profile for Web Services (DPWS) [4], is

completely based on standardized Web service

specifications and defines a profile (a subset) for the

use of Web service technology in the embedded

domain.

2.1. Devices Profile for Web Services
The Devices Profile for Web Services defines a

common subset of web service based communication

patterns for use in embedded devices. The protocol

stack utilizes standardized internet protocols, namely

TCP/IP and UDP (Single- and Multicast). For basic

messaging HTTP and SOAP respectively SOAP-over-

UDP are employed. On top Web service protocols are

arranged that deal with service and device description,

discovery, eventing and security. A DPWS device may

host several services, which can be discovered and

used by DPWS clients. The DPWS protocol stack is

depicted in Figure 1.

2.2. SOA in Industrial Automation
The emergence of powerful but less power consuming,

affordable, and embedded computing components

facilitates the employment of SOA paradigms even in

the world of industrial automation. Currently a lot of

proprietary standards in device control and

communication protocols often prevent the

interoperable use of components from different

vendors. Thus upgrades or extensions of the

manufacturing automation system tend to be costly and

time consuming [1]. The usage of SOA in industrial

automation provides a common ground for

interoperability of all devices in a device network.

Moreover an integration of low-level devices and high-

level enterprise applications (e.g. an ERP system) is

possible. In the European ITEA SIRENA [5] project

the applicability of DPWS in an industrial automation

scenario was demonstrated for the first time.

3. Automation and Control
An industrial control system commonly has a structure

as depicted in Figure 2. This architecture could be

divided into three main layers: sensors and actors,

control and management.

The actual technical process is located at the bottom of

the control hierarchy and subsumes all technical low-

level components involved in the production process

like motors, pushers or drilling machines. The process

is monitored by sensors, collecting data from the

involved resources including e.g. temperature, rpm or

the position of work pieces (indicated by a light-barrier

state change). This information is send via a

specialized communication infrastructure to the process

control level and is repeatedly evaluated by the control

algorithm. Based on the sensor information the control

algorithm computes control signals which are in turn

send to the actuators connected to the technical

process. Moreover status information from the process

control level is sent to the process management level.

This may include forwarded sensor values, progress

Figure 1. DPWS protocol stack

information and fault messages. At process

management level a human operator monitors the

overall process behavior, adjusts particular parameters

and sends configuration commands to the process

control system. Besides the remote high-level

controlling and monitoring of the technical process, in

some occasions (e.g. a severe fault that requires local

intervention and repair) the operator may be forced to

directly intervene with the low-level hardware

components via the attached control panel.

4. Service-oriented Control Architecture
The process control architecture shown in the last

paragraph is the structural basis for the service-oriented

architecture presented in this paper. The service-

orientation of the devices involved in the technical

process and the attached sensors suggests the use of

service-orientation also on the control and management

levels. The sensors and actuators export their

functionality through defined interfaces which can be

used by higher level control services. Control services

may also be layered and arranged in a service

hierarchy. Figure 3 illustrates this architecture: the

application process interacts with the technical process

using the supplied control services. The control

services themselves are acting both as a service

consumer (client role) and service provider (server

role) and thus enable control service layering.

For example, a rotary disk consists of a rotation motor

and a motor for moving the conveyer belt on top of the

disk. Additionally the disk is supplied with sensors,

detecting the location of the work piece currently

transported on the conveyer belt and a sensor to

measure the position of the rotary disk itself. Both, the

rotary part and the transportation part are each

controlled by their own control service. For the control

of the overall process of moving a work piece on the

disk, stopping the conveyer, turning the disk to its new

position and finally transporting the work piece away

from the rotary table, an additional control service is

provided that uses the control services of the particular

parts of the rotary disk. Therefore the control services

themselves offer service functionality to higher level

control or management services. However, the stacking

of control services is constrained by the real-time

requirements of the process, as each new layer of

control implies additional, time consuming

communication between the services.

The services (e.g. sensor or controller) offer different

interfaces which can be categorized using the following

three classes:

• functional purpose

• discovery and description

• service binding

The functional interface offers the functionality of the

service, e.g. a getVariable method for sensor or a

setVariable method for actuator services. The

functional service interface of control services offers

high-level methods like drillHole.

The control services comply with the notion of so

called function building blocks (IEC 61499). Each

building block comprises input and output variables

plus local status variables. The functionality of a

particular function block is defined by the algorithm

that is used to compute the outputs by using the inputs

and the local variables.

The discovery interface contains the necessary methods

for services to be able to answer to search requests and

to provide data concerning device type, location and

binding address. Finally, the binding interface

subsumes the features for lease based service binding

and reservation.

Figure 3. Service hierarchy

Figure 2. Control system

5. Flexible Service Binding
One of the key features of service-orientation is the use

of loosely coupled components. As all devices, sensors

and actuators provide a service interface the coupling

of components can correspond to the flexible binding

of services.

This flexible binding of services demands for

• service description, discovery and selection,

and

• service association and linking mechanisms.

The service description subsumes three basic parts:

• Type and interface definition,

• Binding and communication information,

• Functional properties.

The type and interface definition of a service specifies

the methods and parameters associated with a specific

service type. All services that comply with a specific

service type offer the same interface. The binding and

communication information contains information about

the actual communication endpoints and the basic

communication mechanisms, such as IP addresses and

ports, and application protocol regulations. At last, the

functional properties complete the information on

devices in the automation system. They e.g. include,

which sensor is attached to which conveyer and what is

the exact position.

The service description is the basis for the discovery

and selection of matching services by the automation

process and control services. In our system, the

discovery and description phase are based on DPWS

technology and thus adhere to the WS-Discovery and

WS-Transfer (for metadata exchange) standards.

The association and linking of matching services with

a particular client is handled by our lease based

binding approach to meet the requirements of a flexible

but also stable way for dealing with loosely coupled

services in the domain of industrial automation.

The notion of a lease was first introduced by [2] and

was used to provide an efficient, fault tolerant way for

using file caches in distributed environments. Further

on leases were used in Jini [6] to grant clients access to

network services. In the case a client wants to use a

particular service, it issues a lease-request which

contains a duration for which the client wants the lease

to be valid. The service responds with a denial or a

grant. A granted lease is valid only for the duration.

Thus the client has to request another lease for service

use after the current lease has expired or may prolong it

before its valid duration has passed.

In automation systems a client usually uses a set of

services (sensors, actuators, and controllers) and has to

allocate a suitable ensemble. Therefore we extend the

lease model by adding support for the atomic allocation

of service ensembles. The atomicity property

guarantees that a client either is granted the leases for

all requested services or it gets no lease at all. This

atomicity is achieved by a 2-phase algorithm, which is

similar to the 2-phase-commit protocol. It is a lease

granting algorithm with explicit reservations (cf. Figure

4).

During the coupling phase the client asks the suitable

services for reservations. Reservations are binding for a

short duration. If all services positively respond, the

client submits lease-requests that yield to valid usage

leases. If at least one service cannot satisfy the

reservation request, the client cancels all other

reservations.

After the coupling phase is completed, the interaction

of coupled components starts. The client process

configures and initializes the services and finally starts

production (cf. Figure 5). When the leases are about to

expire, the client either issues a prolongation request to

extend the production phase or stops the services and

performs cleanup operations. The prolongation of

existing leases uses the same 2-phase algorithm as used

at initial lease creation. In the decoupling phase the

expired leases are fairly released and deleted.

6. Application Example
The service-oriented control software presented so far

was experientially evaluated for an example industrial

automation setup. The example system and the tested

applications scenarios are presented in this section.

6.1. Example Structure
The structure of our evaluation example is depicted in

Figure 6. The work pieces enter the system through

conveyer conv1 and conv2. Both conveyers are located

next to a rotary disk, which is able to collect work

pieces from either conv1 or conv2 by rotating the disk

and using the conveyer element conv3 on top of the

disk. This conveyer transports the work pieces to

conveyer conv4 which in turn moves them through the

lacquer machine. After being painted by the lacquer

machine, the work pieces are checked by a laser sensor.

Figure 4. Lease lifecycle

Figure 5. Leases and production

Inaccurate pieces are pushed into a disposal box by a

pusher. Proper items are moved out of the system to

the next work station. The devices and sensors (not

depicted) are exporting services as described in section

3. The logical control of the conveyers is implemented

using a PID controlling algorithm (similar to [7]),

which could be differently parameterized for evaluation

purposes.

6.2. Application Scenarios
The example system was evaluated using different

application scenarios. The scenarios use different

service hierarchies and thus model different levels of

control in the application process.

The first scenario comprises the following process:

1. Work pieces are picked up from conv1 or

conv2.

2. The rotary disk and conv3 transport the work

pieces to conv4.

3. The lacquer machine paints the work pieces.

4. The inaccurate work pieces are detected and

pushed into the disposal box.

5. The acceptable work pieces are moved out of

the system.

The service hierarchy for this application process is

depicted in Figure 7. The application process uses six

different control services (light gray), each responsible

for a specific part of the example system. The control

services themselves are using a set of sensor and

actuator service interfaces to interact with the hardware

at technical process level (dark grey). In contrast, the

rotdisk control service for controlling the rotary disk

and conv3 on top of the disk as a whole uses the

control services of the single components. It

implements an algorithm for the balanced use of the

two attached input conveyers.

The second application scenario uses only the input

conveyer conv1, thus the usage of the rotdisk control

service is not necessary:

0. Statically move the rotary disk in

conv1-conv4 position using the disk service.

1. Conv1 transports the work pieces to conv3.

2. Conv3 forwards the work pieces to conv4.

3. Conveyer conv4 moves the pieces through the

lacquer machine.

4. The pusher sorts out erroneous pieces.

5. Acceptable items leave the system.

The service hierarchy used for the second scenario is

depicted in Figure 8.

The application process of the second scenario uses

seven control services. The sub-component services of

the rotary disk now are directly used to initially set up

the right direction of the disk and to control the conv3

at runtime. This change in the process outline does not

infer changes in the service implementations of the

devices used.

Further scenarios were used to evaluate the

applicability of multiple application processes, each

controlling a part of the overall process.

7. Evaluation
The evaluation environment comprises three major

components: the DPWS stack, the Java Real-time VM

and the simulation system.

The WS4D.org DPWS stack [8], developed by

Dortmund University and Materna, is a Java based

implementation of the DPWS protocol stack and

provides a service oriented communication

infrastructure. It was developed with modularity and

extensibility in mind and thus can be adapted to

varying application scenarios, ranging from small

client-only implementations for mobile phones to

multimedia or file-sharing services for embedded set-

top boxes.

The Java Real-time System [9] comprises technologies

and concepts for correct reasoning about the timing of

Java real-time applications. It contains new types of

real-time threads, memory handling schemes (e.g.

Figure 8. Scenario 2 service hierarchy

Figure 6. Example system

Figure 7. Scenario 1 service hierarchy

preventing the garbage collector from influencing the

runtime behavior in a nondeterministic way), high

precision timers with nanosecond resolution and direct

memory access for implementing device drivers purely

in Java. Nevertheless, the Java RTS depends on the

real-time capabilities of the underlying operating

system.

For evaluation purposes we developed a testing

environment, split into two blocks: a simulation system

and the sensor, actuator and control service

implementations. The time discrete simulation system

is composed of four major components. The simulation

model component manages a grid model for locating

devices, sensors and work pieces in the system and a

component model for preserving the state of the

simulated components. The simulation control

component periodically updates the model information.

Changes in the internal state of sensors and actuators

are sent to and received from the distributed

components via an UDP based communication

protocol. It was especially designed to consume few

network bandwidth. A graphical user interface is used

to track and control the simulation.

The simulated system comprises sensor, actuator and

control service implementations. The sensor and

actuator implementations are connected to the

simulation system via the UDP based communication

protocol (s.a.) to receive and publish state information.

The simulations were run on an Athlon64 X2-3800

machine with two GB of memory and an OpenSolaris

installation as basis for the Java RTS.

7.1. Results
A series of experiments focused on the evaluation of

the functional behavior of the control system. Particular

test sequences checked the feasibility and stability of

the lease-based allocation. Atomic allocation and setup

of service ensembles were as well tested as atomic

lease prolongation and occasional aborts followed by

the searching and switching to alternative ensembles.

In the course of additional experiments the service call

roundtrip times (using simple input and output

parameters) were measured in order to check the

current real-time limits of Java VM and DPWS based

control system implementations. Table 1 presents the

values obtained for local VM-internal (on the

OpenSolaris host) and for remote DPWS-based service

calls (between the OpenSolaris and the PC host). The

configuration was able to support low to medium real-

time requirements (e.g. cycle times >50ms). The

application for fast control processes is not yet

advisable, mainly because of the high roundtrip time

variance observed. In the remote case, it stems from the

delay variance of Ethernet frames. The variance

observed in the local scenario shows that the

integration of the real-time Java VM into the operating

system has to be improved further.

8. Concluding Remarks
We have presented a service-oriented control

architecture for automation systems. The architecture

forms a service hierarchy ranging from low-level

sensor and actuator services, over a number of control

service levels up to application processes. Instead of

statically associating services for the different client

operations, a flexible lease based binding approach is

used. This approach follows the loosely coupled nature

of components in service-oriented architectures. The

algorithm used for the flexible binding approach was

tested in different application scenarios. The evaluation

results regarding action call roundtrip time exhibit that

the Java-based service-oriented approach may not yet

be a feasible solution for all applications. However, the

applicability can be extended by using e.g. hardware-

based message processing and real-time capable

network infrastructures (e.g. PROFINET [10]).

9. References
[1] H. Smit, F. Jammes, “Service-Oriented Paradigms in

Industrial Automation”, IEEE Transactions on

Industrial Informatics, Vol. 1, No. 1, pp. 62-70, 2005.

[2] C. Gray, D. Cheriton, “Leases: an efficient fault-tolerant

mechanism for distributed file cache consistency”, ACM

SIGOPS Operating Systems Review, Vol. 23, Issue 5,

pp. 202-210, Dec. 1989.

[3] Universal Plug and Play (UPnP), http://www.upnp.org,

1999.

[4] Devices Profile for Web Services (DPWS),

http://schemas.xmlsoap.org/ws/2006/02/devprof/, 2006.

[5] Service Infrastructure for Real-time Embedded

Networked Applications (SIRENA),

http://www.sirena-itea.org, 2006.

[6] Sun Microsystems, Jini, Network Technology,

http://www.sun.com/software/jini, 1999.

[7] Kapsers, Küfner, “Messen – Steuern – Regeln:

Elemente der Automatisierungstechnik”, Vieweg

Verlag, 6th Edition, p. 253, 2006.

[8] WS4D.org Java Multi Edition DPWS Stack,

http://www.ws4d.org, 2007.

[9] Sun Java Real-time System 2.0 (Java RTS),

http://java.sun.com/javase/technologies/realtime, 2007.

[10] PROFINET, http://www.profibus.com/pn/, 2007.

 remote call (ms) local call (ms)

maximum 70,02 0,1666

minimum 8,21 0,0069

mean 11,30 0,0127

median 9,46 0,0129

Table 1. Action call roundtrip times

