
 

 

Service-orientation and Flexible Service Binding in 

Distributed Automation and Control Systems 
 

 

Andre Pohl and Heiko Krumm 

 

University of Dortmund, Germany 

(pohl, krumm)@ls4.cs.uni-dortmund.de 

 

Felix Holland, Ingo Lück  

and Franz-Josef Stewing 

Materna Information & Communications 

(felix.holland, ingo.lueck,  

franz-josef.stewing)@materna.de 

 

Abstract 
 

An experimental study shows the feasibility of 

service-oriented architectures for industrial 

automation and control systems even with respect to 

lower, real-time dependent control functions. For that 

purpose, general SOA-guidelines were refined in order 

to cover the distribution of control functions between 

services and the lay-out and management of device-

based sensor, actor and control services. Particular 

emphasis was placed on the dynamic lease-based 

binding of services which on the one hand provides 

flexible and loose coupling of system components but 

on the other hand has to ensure reliable 

communication and cooperation. The guidelines were 

applied to the experimental implementation of a 

manufacturing cell control system using a real-time 

version of the Java Runtime Environment. The Device 

Profile for Web Services (DPWS) was used as basic 

infrastructure technology. Test and evaluation were 

performed under distributed simulation of technical 

processes and devices. 

We shortly describe DPWS, present the architecture 

guidelines, outline the experimental control system 

implementation, and report on its evaluation.   

 

1. Introduction 
Today, many modern business applications adhere to 

the paradigms of service orientation and service 

oriented architectures in order to create loosely 

coupled, modular software systems, easy to maintain 

and to extend. In the field of automation and control 

systems, SOA-based flexibility is of even more interest, 

because it contributes to substantial reductions of 

installation and setup costs [1]. These costs are of 

particular importance since manufacturing plants again 

and again have to be adapted to new products resulting 

in changes of the technical equipment and the process 

flows performed. Additional reconfigurations are 

applied occasionally in the course of repair measures in 

order to bypass defect equipment and to avoid 

expensive production downtimes. 

Despite the desired flexibility, however, there is a 

needs for stable and reliable operation phases since the 

efficiency of the production equipment usually depends 

on steady operational conditions. For a certain 

manufacturing operation usually an ensemble of 

suitable devices, machines and transport equipment is 

necessary. The members of the ensemble must initially 

be configured in harmony with each other and 

thereafter be available for a certain minimal period of 

operation time, which may only be aborted due to 

exceptional circumstances. The members of the 

ensemble have to be allocated before configuration, 

some of them because they can only be used 

exclusively, others may be sharable but have to allow 

for the additional load. 

In the service-oriented setting this means, that a client – 

which may be either a control application or a 

compound service – must be able to search, find and 

allocate a suitable ensemble of used services. Since a 

used service may already have other obligations, it may 

not be disposable and deny a current allocation request. 

Then, one member of the planned ensemble fails, and 

the ensemble as a whole is currently not useful. 

Therefore, the client shall be able to withdraw the other 

allocation requests and look for alternative ensembles. 

In order to fulfill these functional requirements of 

temporary and atomic ensemble allocation we extended 

the approach of lease-based allocation [2] by 

introducing an explicit reservation phase in a way that 

reservation and allocation perform a two-phase 

commitment. 

Moreover we transposed the architecture of 

hierarchical control systems to the field of service 

systems using the platform the Device Profile for Web 

Services (DPWS) as basic infrastructure technology 



 

 

supporting the communication between devices via 

service interfaces as well as the exploration and 

binding of services. The application of the resulting 

architecture guidelines and the usage of the lease-based 

allocation were exemplified by means of a production 

cell scenario using a real-time Java Runtime 

Environment. 

In the sequel, we outline DPWS and its application to 

service-oriented industrial applications. Referring to 

the general structure of automation and control 

systems, the architectural principles of service-oriented 

control systems are described. Sect. 5 introduces the 

flexible, but reliable lease-based service binding. Sect. 

6 presents the application scenario and reports on its 

implementation. Sect. 7 shortly enters into validation 

aspects before concluding remarks close the 

contribution. 

 

2. Service Oriented Architectures 
In SOA, interoperability of different platforms is 

established through the definition of common 

communication protocol and message exchange 

standards. But not only in enterprise domain software 

service-orientation is a feasible way of creating flexible 

software systems, as through the growth of computing 

power of embedded devices these paradigms are also 

applicable to embedded software solutions. Universal 

Plug’n’Play (UPnP) [3] was the first specification of a 

service oriented infrastructure to be used in embedded 

application scenarios, using SOAP and HTTP as a 

basic communication layer and providing mechanisms 

for service discovery, action invocation and event 

based communication schemes. Its successor, the 

Devices Profile for Web Services (DPWS) [4], is 

completely based on standardized Web service 

specifications and defines a profile (a subset) for the 

use of Web service technology in the embedded 

domain. 

  

2.1. Devices Profile for Web Services 
The Devices Profile for Web Services defines a 

common subset of web service based communication 

patterns for use in embedded devices. The protocol 

stack utilizes standardized internet protocols, namely 

TCP/IP and UDP (Single- and Multicast).  For basic 

messaging HTTP and SOAP respectively SOAP-over-

UDP are employed. On top Web service protocols are 

arranged that deal with service and device description, 

discovery, eventing and security. A DPWS device may 

host several services, which can be discovered and 

used by DPWS clients. The DPWS protocol stack is 

depicted in Figure 1. 

2.2. SOA in Industrial Automation 
The emergence of powerful but less power consuming, 

affordable, and embedded computing components 

facilitates the employment of SOA paradigms even in 

the world of industrial automation. Currently a lot of 

proprietary standards in device control and 

communication protocols often prevent the 

interoperable use of components from different 

vendors. Thus upgrades or extensions of the 

manufacturing automation system tend to be costly and 

time consuming [1]. The usage of SOA in industrial 

automation provides a common ground for 

interoperability of all devices in a device network. 

Moreover an integration of low-level devices and high-

level enterprise applications (e.g. an ERP system) is 

possible. In the European ITEA SIRENA [5] project 

the applicability of DPWS in an industrial automation 

scenario was demonstrated for the first time. 

 

3. Automation and Control 
An industrial control system commonly has a structure 

as depicted in Figure 2. This architecture could be 

divided into three main layers: sensors and actors, 

control and management. 

The actual technical process is located at the bottom of 

the control hierarchy and subsumes all technical low-

level components involved in the production process 

like motors, pushers or drilling machines. The process 

is monitored by sensors, collecting data from the 

involved resources including e.g. temperature, rpm or 

the position of work pieces (indicated by a light-barrier 

state change). This information is send via a 

specialized communication infrastructure to the process 

control level and is repeatedly evaluated by the control 

algorithm. Based on the sensor information the control 

algorithm computes control signals which are in turn 

send to the actuators connected to the technical 

process. Moreover status information from the process 

control level is sent to the process management level. 

This may include forwarded sensor values, progress 

 
 

Figure 1. DPWS protocol stack 



 

 

information and fault messages. At process 

management level a human operator monitors the 

overall process behavior, adjusts particular parameters 

and sends configuration commands to the process 

control system. Besides the remote high-level 

controlling and monitoring of the technical process, in 

some occasions (e.g. a severe fault that requires local 

intervention and repair) the operator may be forced to 

directly intervene with the low-level hardware 

components via the attached control panel.  

 

4. Service-oriented Control Architecture 
The process control architecture shown in the last 

paragraph is the structural basis for the service-oriented 

architecture presented in this paper. The service-

orientation of the devices involved in the technical 

process and the attached sensors suggests the use of 

service-orientation also on the control and management 

levels. The sensors and actuators export their 

functionality through defined interfaces which can be 

used by higher level control services. Control services 

may also be layered and arranged in a service 

hierarchy. Figure 3 illustrates this architecture: the 

application process interacts with the technical process 

using the supplied control services. The control 

services themselves are acting both as a service 

consumer (client role) and service provider (server 

role) and thus enable control service layering.   

For example, a rotary disk consists of a rotation motor 

and a motor for moving the conveyer belt on top of the 

disk. Additionally the disk is supplied with sensors, 

detecting the location of the work piece currently 

transported on the conveyer belt and a sensor to 

measure the position of the rotary disk itself. Both, the 

rotary part and the transportation part are each 

controlled by their own control service. For the control 

of the overall process of moving a work piece on the 

disk, stopping the conveyer, turning the disk to its new 

position and finally transporting the work piece away 

from the rotary table, an additional control service is 

provided that uses the control services of the particular 

parts of the rotary disk. Therefore the control services 

themselves offer service functionality to higher level 

control or management services. However, the stacking 

of control services is constrained by the real-time 

requirements of the process, as each new layer of 

control implies additional, time consuming 

communication between the services.  

The services (e.g. sensor or controller) offer different 

interfaces which can be categorized using the following 

three classes: 

• functional purpose 

• discovery and description 

• service binding 

The functional interface offers the functionality of the 

service, e.g. a getVariable method for sensor or a 

setVariable method for actuator services. The 

functional service interface of control services offers 

high-level methods like drillHole. 

The control services comply with the notion of so 

called function building blocks (IEC 61499). Each 

building block comprises input and output variables 

plus local status variables. The functionality of a 

particular function block is defined by the algorithm 

that is used to compute the outputs by using the inputs 

and the local variables. 

The discovery interface contains the necessary methods 

for services to be able to answer to search requests and 

to provide data concerning device type, location and 

binding address. Finally, the binding interface 

subsumes the features for lease based service binding 

and reservation. 

 

 
 

Figure 3.  Service hierarchy  
 

Figure 2. Control system 
 



 

 

5. Flexible Service Binding 
One of the key features of service-orientation is the use 

of loosely coupled components. As all devices, sensors 

and actuators provide a service interface the coupling 

of components can correspond to the flexible binding 

of services.  

This flexible binding of services demands for  

• service description, discovery and selection, 

and 

• service association and linking mechanisms. 

The service description subsumes three basic parts: 

• Type and interface definition, 

• Binding and communication information, 

• Functional properties. 

The type and interface definition of a service specifies 

the methods and parameters associated with a specific 

service type. All services that comply with a specific 

service type offer the same interface. The binding and 

communication information contains information about 

the actual communication endpoints and the basic 

communication mechanisms, such as IP addresses and 

ports, and application protocol regulations. At last, the 

functional properties complete the information on 

devices in the automation system. They e.g. include, 

which sensor is attached to which conveyer and what is 

the exact position.  

The service description is the basis for the discovery 

and selection of matching services by the automation 

process and control services. In our system, the 

discovery and description phase are based on DPWS 

technology and thus adhere to the WS-Discovery and 

WS-Transfer (for metadata exchange) standards. 

The association and linking of matching services with 

a particular client is handled by our lease based 

binding approach to meet the requirements of a flexible 

but also stable way for dealing with loosely coupled 

services in the domain of industrial automation.  

The notion of a lease was first introduced by [2] and 

was used to provide an efficient, fault tolerant way for 

using file caches in distributed environments. Further 

on leases were used in Jini [6] to grant clients access to 

network services. In the case a client wants to use a 

particular service, it issues a lease-request which 

contains a duration for which the client wants the lease 

to be valid. The service responds with a denial or a 

grant. A granted lease is valid only for the duration. 

Thus the client has to request another lease for service 

use after the current lease has expired or may prolong it 

before its valid duration has passed. 

In automation systems a client usually uses a set of 

services (sensors, actuators, and controllers) and has to 

allocate a suitable ensemble. Therefore we extend the 

lease model by adding support for the atomic allocation 

of service ensembles. The atomicity property 

guarantees that a client either is granted the leases for 

all requested services or it gets no lease at all. This 

atomicity is achieved by a 2-phase algorithm, which is 

similar to the 2-phase-commit protocol. It is a lease 

granting algorithm with explicit reservations (cf. Figure 

4).  

During the coupling phase the client asks the suitable 

services for reservations. Reservations are binding for a 

short duration. If all services positively respond, the 

client submits lease-requests that yield to valid usage 

leases. If at least one service cannot satisfy the 

reservation request, the client cancels all other 

reservations. 

After the coupling phase is completed, the interaction 

of coupled components starts. The client process 

configures and initializes the services and finally starts 

production (cf. Figure 5). When the leases are about to 

expire, the client either issues a prolongation request to 

extend the production phase or stops the services and 

performs cleanup operations. The prolongation of 

existing leases uses the same 2-phase algorithm as used 

at initial lease creation.  In the decoupling phase the 

expired leases are fairly released and deleted. 

 

6. Application Example 
The service-oriented control software presented so far 

was experientially evaluated for an example industrial 

automation setup. The example system and the tested 

applications scenarios are presented in this section. 

 

6.1. Example Structure 
The structure of our evaluation example is depicted in 

Figure 6. The work pieces enter the system through 

conveyer conv1 and conv2. Both conveyers are located 

next to a rotary disk, which is able to collect work 

pieces from either conv1 or conv2 by rotating the disk 

and using the conveyer element conv3 on top of the 

disk. This conveyer transports the work pieces to 

conveyer conv4 which in turn moves them through the 

lacquer machine. After being painted by the lacquer 

machine, the work pieces are checked by a laser sensor. 

 
 

Figure 4.  Lease lifecycle 
 

 
 

Figure 5. Leases and production 



 

 

Inaccurate pieces are pushed into a disposal box by a 

pusher. Proper items are moved out of the system to 

the next work station. The devices and sensors (not 

depicted) are exporting services as described in section 

3. The logical control of the conveyers is implemented 

using a PID controlling algorithm (similar to [7]), 

which could be differently parameterized for evaluation 

purposes. 

 

6.2. Application Scenarios 
The example system was evaluated using different 

application scenarios. The scenarios use different 

service hierarchies and thus model different levels of 

control in the application process. 

The first scenario comprises the following process: 

1. Work pieces are picked up from conv1 or 

conv2. 

2. The rotary disk and conv3 transport the work 

pieces to conv4. 

3. The lacquer machine paints the work pieces. 

4. The inaccurate work pieces are detected and 

pushed into the disposal box. 

5. The acceptable work pieces are moved out of 

the system. 

The service hierarchy for this application process is 

depicted in Figure 7. The application process uses six 

different control services (light gray), each responsible 

for a specific part of the example system. The control 

services themselves are using a set of sensor and 

actuator service interfaces to interact with the hardware 

at technical process level (dark grey). In contrast, the 

rotdisk control service for controlling the rotary disk 

and conv3 on top of the disk as a whole uses the 

control services of the single components. It 

implements an algorithm for the balanced use of the 

two attached input conveyers. 

The second application scenario uses only the input 

conveyer conv1, thus the usage of the rotdisk control 

service is not necessary: 

0. Statically move the rotary disk in 

conv1-conv4 position using the disk service. 

1. Conv1 transports the work pieces to conv3. 

2. Conv3 forwards the work pieces to conv4. 

3. Conveyer conv4 moves the pieces through the 

lacquer machine. 

4. The pusher sorts out erroneous pieces. 

5. Acceptable items leave the system. 

The service hierarchy used for the second scenario is 

depicted in Figure 8. 

The application process of the second scenario uses 

seven control services. The sub-component services of 

the rotary disk now are directly used to initially set up 

the right direction of the disk and to control the conv3 

at runtime. This change in the process outline does not 

infer changes in the service implementations of the 

devices used.  

Further scenarios were used to evaluate the 

applicability of multiple application processes, each 

controlling a part of the overall process. 

 

7. Evaluation 
The evaluation environment comprises three major 

components: the DPWS stack, the Java Real-time VM 

and the simulation system. 

The WS4D.org DPWS stack [8], developed by 

Dortmund University and Materna, is a Java based 

implementation of the DPWS protocol stack and 

provides a service oriented communication 

infrastructure. It was developed with modularity and 

extensibility in mind and thus can be adapted to 

varying application scenarios, ranging from small 

client-only implementations for mobile phones to 

multimedia or file-sharing services for embedded set-

top boxes. 

The Java Real-time System [9] comprises technologies 

and concepts for correct reasoning about the timing of 

Java real-time applications. It contains new types of 

real-time threads, memory handling schemes (e.g. 

 

Figure 8. Scenario 2 service hierarchy 
 

 
 

Figure 6. Example system 

 
 

Figure 7. Scenario 1 service hierarchy 
 



 

 

preventing the garbage collector from influencing the 

runtime behavior in a nondeterministic way), high 

precision timers with nanosecond resolution and direct 

memory access for implementing device drivers purely 

in Java. Nevertheless, the Java RTS depends on the 

real-time capabilities of the underlying operating 

system. 

For evaluation purposes we developed a testing 

environment, split into two blocks: a simulation system 

and the sensor, actuator and control service 

implementations. The time discrete simulation system 

is composed of four major components. The simulation 

model component manages a grid model for locating 

devices, sensors and work pieces in the system and a 

component model for preserving the state of the 

simulated components. The simulation control 

component periodically updates the model information. 

Changes in the internal state of sensors and actuators 

are sent to and received from the distributed 

components via an UDP based communication 

protocol. It was especially designed to consume few 

network bandwidth. A graphical user interface is used 

to track and control the simulation. 

The simulated system comprises sensor, actuator and 

control service implementations. The sensor and 

actuator implementations are connected to the 

simulation system via the UDP based communication 

protocol (s.a.) to receive and publish state information. 

The simulations were run on an Athlon64 X2-3800 

machine with two GB of memory and an OpenSolaris 

installation as basis for the Java RTS. 

 

7.1. Results 
A series of experiments focused on the evaluation of 

the functional behavior of the control system. Particular 

test sequences checked the feasibility and stability of 

the lease-based allocation. Atomic allocation and setup 

of service ensembles were as well tested as atomic 

lease prolongation and occasional aborts followed by 

the searching and switching to alternative ensembles. 

In the course of additional experiments the service call 

roundtrip times (using simple input and output 

parameters) were measured in order to check the 

current real-time limits of Java VM and DPWS based 

control system implementations. Table 1 presents the 

values obtained for local VM-internal (on the 

OpenSolaris host) and for remote DPWS-based service 

calls (between the OpenSolaris and the PC host). The 

configuration was able to support low to medium real-

time requirements (e.g. cycle times >50ms). The 

application for fast control processes is not yet 

advisable, mainly because of the high roundtrip time 

variance observed. In the remote case, it stems from the 

delay variance of Ethernet frames. The variance 

observed in the local scenario shows that the 

integration of the real-time Java VM into the operating 

system has to be improved further. 

 

8. Concluding Remarks 
We have presented a service-oriented control 

architecture for automation systems. The architecture 

forms a service hierarchy ranging from low-level 

sensor and actuator services, over a number of control 

service levels up to application processes. Instead of 

statically associating services for the different client 

operations, a flexible lease based binding approach is 

used. This approach follows the loosely coupled nature 

of components in service-oriented architectures.  The 

algorithm used for the flexible binding approach was 

tested in different application scenarios. The evaluation 

results regarding action call roundtrip time exhibit that 

the Java-based service-oriented approach may not yet 

be a feasible solution for all applications. However, the 

applicability can be extended by using e.g. hardware-

based message processing and real-time capable 

network infrastructures (e.g. PROFINET [10]). 
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 remote call (ms) local call (ms) 

maximum 70,02 0,1666 

minimum 8,21 0,0069 

mean 11,30 0,0127 

median 9,46 0,0129 
 

Table 1. Action call roundtrip times 


