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Abstract

This paper present methodological results that allow the cost-effective nhumerical
analysis of finite-state generalized semi-Markov processes (GSMPs) with
exponential and deterministic events by an embedded general state space Markov
chain (GSSMC). Key contributions constitute the formal proof that elements of
the transition kernel of the GSSMC can always be computed by appropriate
summation of transient state probabilities of continuous-time Markov chains and
the derivation of conditions under which kernel elements are constant.
Furthermore, we derive conditions on the building blocks of the GSMP for which
state probabilitiest (ay, &) are symmetric in respect to clock readings of
deterministic events concurrently active. The exploitation of these properties is the
key driver to the cost-effective time-dependent and stationary analysis of the
considered class of GSMPs. The techniques of this paper are applicable to
networks of queues, stochastic Petri nets, time-enhanced state charts and UML
specifications, and other discrete-event stochastic systems with an underlying
stochastic process that can be represented as a GSMP with exponential and
deterministic events.
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Abstract

This paper present methodological results that allow the cost-effective humerical
analysis of finite-state generalized semi-Markov processes (GSMPs) with
exponential and deterministic events by an embedded general state space Markov
chain (GSSMC). Key contributions constitute the formal proof that elements of
the transition kernel of the GSSMC can always be computed by appropriate
summation of transient state probabilities of continuous-time Markov chains and
the derivation of conditions under which kernel elements are constant.
Furthermore, we derive conditions on the building blocks of the GSMP for which
state probabilitiest (ay, &) are symmetric in respect to clock readings of
deterministic events concurrently active. The exploitation of these properties is the
key driver to the cost-effective time-dependent and stationary analysis of the
considered class of GSMPs. The techniques of this paper are applicable to
networks of queues, stochastic Petri nets, time-enhanced state charts and UML
specifications, and other discrete-event stochastic systems with an underlying
stochastic process that can be represented as a GSMP with exponential and
deterministic events.

1 Introduction

Since many activities associated with computer and communication systems have a constant
duration, performance and dependability models of such systems should allow representation
of both stochastic and deterministic timing. Activities of computer systems which have a
constant duration include memory access times, transfer times for data packets of fixed size,
time-outs, and repair times of components. This paper deals with numerical methods for
analysis of discrete-event systems with stochastic and deterministic timing. A discrete-event
stochastic system makes state transitions when events associated with the occupied state
occur; events occur only at an increasing sequence of random times. The underlying stochastic
process of a discrete-event stochastic system records the state of the system as it evolves over
continuous time. The usual model for this process is a generalized semi-Markov process
(GSMP); see e.g., Glasserman and Yao [5], Glynn [6], Shedler [11], and Whitt [12],

In this paper, we present methodological results that allow the cost-effective numerical
analysis of finite-state generalized semi-Markov processes (GSMPs) with exponential and
deterministic events by an embedded general state space Markov chain (GSSMC). Lindemann
and Shedler introduced a GSSMC embedded at equidistant time points nD (n=1,2,..) of the
continuous-time GSMP and showed that both the GSMP and the GSSMC have the same
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stationary or time-averaged distributions [9]. Numerical solvers for the system of
multidimensional Fredholm integral equations that constitute the time-dependent and
stationary equations of the GSSMC have recently been presented [10].

To make this GSSMC approach effectively applicable in performance and dependability
modeling projects at large, the remaining open problem constitutes the algorithmic generation
of the simplest form of the transition kernel of this GSSMC given the building blocks of the
GSMP. The transition kernel of the GSSMC specifies one-step jump probabilities from a
given state at instant of time nD to all reachable new states at instant of time (n+1)D. In
general, elements of the transition kernel of a GSSMC are functions of clock readings
associated with the current state and intervals for clock readings associated with the new state.

This paper presents three theorems that provide the foundation for such an algorithmic
generation of the transition kernel. Key contributions constitute the formal proof that kernel
elements can always be computed by summation of transient state probabilities of continuous-
time Markov chains (Theorem 1) and the derivation of conditions on the building blocks of
the GSMP under which kernel elements are constant; i.e., are not functions of clock readings
(Theorem 2). Furthermore, we derive conditions on the building blocks of the GSMP for
which state probabilities; (a;, &) are symmetric in respect to clock readings of deterministic
events concurrently active (Theorem 3). Thattjéa;, &) =T ( &, g). The exploitation of
these properties of the GSSMC considerably reduces the computing time and memory
requirements for the numerical solution of the system of Fredholm integral equations. Thus,
the presented methodology constitutes the key driver for the cost-effective numerical analysis
of GSMPs with large state space (e.g., 100,000 states) and several deterministic events
concurrently active. The techniques of this paper are applicable to networks of queues,
deterministic and stochastic Petri nets [1], stochastic process algebras [2], stochastic automata
networks [6], time-enhanced state charts and UML specifications, and other discrete-event
stochastic systems with an underlying stochastic process that can be represented as a GSMP
with exponential and deterministic events.

The remainder of this paper is organized as follows. In Section 2 we show how to define
the GSSMC underlying a GSMP with exponential and deterministic events and introduce the
notation. Section 3 first recalls the form of the transition kernel. Then, we prove three
theorems on properties of the GSSMC. The exploitation of these properties is key to the cost-
effective numerical solution of the systems of Fredholm integral equations representing the
time-dependent and stationary equations of the considered class of GSMPs. In Section 4, we
illustrate the impact of these theorems. Finally, concluding remarks are given.
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2 Derivation of the Embedded General State Space Markov Chain

A generalized semi-Markov process (GSMP) is a continuous-time stochastic process
{S(t): t = 0} that makes a state transition when one or menefit$ associated with the
occupied state occur. Events associated with a state compete to trigger the next state
transition, and each set of trigger events has its own distribution for determining the next
state. At each state transition of the GSME&wevents may be scheduled. For each of these
new events, a clock indicating the time until the event is scheduled to occur is set according to
an independent (stochastic) mechanism. l.e., for each new event a clock reading is generated
according to itglock setting distributionFor each scheduled event which does not trigger a
state transition but is still scheduled in the next state, its cocknuesto run. If an event is

no longer scheduled in the next state, itasceled and the corresponding clock reading is
discarded. In general, in a GSMP events may occur simultaneously resulting in a set of trigger
events E* rather than in a unique trigger event e* [11].

Let E = {e, &,..., &} be a finite set of events and S be a finite set of states. For a state
sUS, let s—» K $be a mapping from the set S to the nonempty subsets of E; E(s) denotes the
set of all events that are scheduled to occur when the process is in state s. When the process is
in state s, the (simultaneous) occurrence of one or more evenE{spftriggers a state
transition to a state . Denote the probability that the new statg' igjiven that the event e*
and the set of Events E* occur in state sp(ns', S é) and p(s’ .S E), respectively. For each s
0 S and e* E(s) or E*0J E(s), we assume tha{lp, %)eor p((Js E) is a probability mass
function. Associated with each event is a clock with a reading that records the remaining time
until the event is scheduled to trigger a state transition. ForSs define the set C(i) of
possible clock-reading vectors in stgtas

C(i) = {(cy,.--1G )G = 0 andg >0 ifand onlyifg 0 E)} 1)
The k-th component of a clock-reading veater (¢, ¢,...,&) is the clock reading associated
with event .

In this paper, we consider finite-state, time-homogeneous GSMPs with exponential and
deterministic clock setting distributions. We divide the set of events EyrlEEget and
enumerate the deterministic events hy @,...,ay. Subsequently, we define,[Xo be the
firing delay of event @ (1 < m < M). For the analysis of this class of GSMPs, in [9] a
discrete-time general state space Markov cf@BSMC) has been introduced. According to
[9], we define D = min{QQ, D,,...,.Dy}. To derive this GSSMC, we define a discrete-time
process X = {X(nD): n > 0} by observing the GSMP {S(t):x 0} at a sequence {nD: n 0}
of fixed times

Xn = (S, Cn(D), Cr(D).... CH( M) (2)



-4-

Here, $ represents the state of the GSMP angihn} represents the clock reading of
deterministic eventg(1< m< M) at instant of time nD. When deterministic evegti not
active at time nD, we seZ,(m) =0. The memoryless property of the exponential distribution
implies that {X(nD): n> 0} is a GSSMC, i.e., it satisfies the Markov property. That is:

A Xy OA] X 1 X gy X o] ZP[X oy OA X ]

for any appropriately defined seA. For ease of exposition, we restrict the discussion to
GSMPs in which at most two deterministic events may be concurrently enabled. However, we
would like to point out that the theorems presented in Section 3 can be extended in a straight-
forward way for GSMPs with more than two deterministic events concurrently active.

The subset of states of the GSSMC in which only exponential events are enabled is
denoted by §, Similarly, the subsets of states in which one deterministic event and two
deterministic events are (concurrently) enabled are denotede.kya®d Jetp respectively.
Subsequently, without loss of generality, we enumerate the states of the GSMP as follows:

Sep={S1, S1---» S}
Stett={SNy+1r SNyt21--r SNp+Not (3)
Stet2={SN Nyt 1s SNp#Npt21---1 Y
We denote the index of the deterministic event(s) enabled in a stayel@® and m(i),
respectively, and neglect other zero-valued clock readings in C(i). Given the initial
distribution of the GSMP, denoted by, 4nd using (2), we define for the GSSM@G With
two deterministic events concurrently enabled three kinds of time-dependent state
probabilities:

" =P(s, = 5| %} for § 0 Seep

" (ay) = P{s,a 5 G(0)s d %} for § 0 Syen @

(e a)=H$=5 GO a Q)< g ¥ forsO S

forn=1,2,...and 0 ;@ < D.

Subsequently, the transient state probabilities of the GSMP at instants of time t = nD are given
by M"for § O Syp TU (D|(,)) for § O Syen and, T (D|(,), m(,)) for 5 O
Seetz respectively. Corresponding stationary or time-averaged state probabilities of the GSMP
are denoted ag;, 1§ (Dy ) ).and T ( By, By ()):

3  Theorems on Properties of the General State Space Markov Chain

3.1 General Form of the Transition Kernel

A GSSMC is completely specified by a transition kernel (heuristically, this is a family of
probability matrices) and an initial distribution at time t = 0. The transition kernel of the
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GSSMC specifies one-step jump probabilities from a given state at instant of time nD to all
reachable new states at instant of time (n+1)D. As for an ordinary discrete-time Markov chain,
for all states jsnot reachable from; sorresponding jump probabilities;(p are zero. In
general, elements of the transition kernel of a GSSMC are functions of clock readings
associated with the current stateasd the new statg. dn this section, we present three
theorems on properties of the transition kernel of the GSSMC.

The transition kernel of the GSSMC,, % {( nEn)nz O} constitutes a functional matrix
of the formP(c, A). In general, the elements of the transition kef(@ A) of the GSSMC
have the form:

i A) = P X0 Of§} XA Xo = (5.0)} (5)

Restricting the discussion to GSMPs with at most two deterministic events concurrently
active, the vector of old clock readingand the sef for intervals of new clock readings are
given by:

O ,Si DSeXp [l ,Si D%Xp
c=0§)=1¢ ,§ 0Sen and  A=A(s)=1(0,a] '§ 0 Sen (6)
(c,62) +§ 0 Serz (0.89] % (0, )] ,§ U Qe

Thus, for GSMPs with at most two deterministic events concurrently active, the transition
kernel of the GSSMC can be expressed by a functional miti)c,,&,8). Subsequently, an
element of this kernel ;) is in general a function in four variableg c;, &, and a
However, we will observe that a large number of kernel elements are constant; i.e.,
P (C1,C2,a1,8) = pj. Furthermore, for most functional kernel elements new clock readings need
not be considered,; i.e.;(01,C2,a1,&) = P;(C1,C2)-

1
P11 Po(ay) Pi{a; aj :
Ny
N
P(cy, €y, 8, &)= P,4(c4) PyACyay P,fcqay a) : (7)
N;+N,
Ny +N,+1
Ps1(cq,C)) Ps{cycra) | Pagcycyaya) :
N
1 Ny IN;#1 N;+#N, N;#N,+1 N

Equation (7) shows the general form of the kef(el,c,,a,&) as a composition of nine
submatricesP;(.) of appropriate dimension using (5) and (6). In (7), the subm&%rx
represents state transition among states.@f B ,(a) represents state transitions from states
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of S to states of &y, andPy3(ag,a) represents state transitions from states.gft6 states

of Syerz Furthermore, submatri®,»(ci,&) represents state transitions among stateg.gb8d
P,i(c1) represents state transitions from states @f; ® states of §, The submatrices
P.s(C1,&,8) represents state transitions from states;Qftd states of Ky, respectively. State
transitions from states of;& to states of &, and Sy, are represented by the submatrices
P32(C1,C5,8) and Ps4(cq,C). The submatridPss(ci,Cya,8) represents state transitions among
states of K.

For kernel elements ¢#;3(c1,C,&,8), in general, there may exist 24 possible orderings for
clock readings ¢ ¢, &, and a. These orderings immediately lead to the regions of integration
in the system of integral equations presented in Section 4.1. Figure 1 shows the two possible
orderings for kernel elements Ry;(c1,C;) and the six possible subregions for elements in
P32(C1,C5,&). Finally, Figure 2 shows the 24 subregions for kernel elemems(icy,Cy,a,).
However, when deterministic evenig @nd &, associated with state gannot be canceled,
only the following eight orderings of clock readings may occur:

(1) O<g<gsasy (2) O<g<ag<asy
Q) O<g=sa<osy (4) O<gsa<gs<a
(B) O0<g<gsay=<a (6) O<g<asas<ay
(7) 0<gsa<gsy 8) O<gsax<gsay

Furthermore, if state probability(a,a) is symmetric with respect to, @and a and the
deterministic events;g and &, cannot be canceled, only the orderings (1) to (4) have to be
considered. Note that within each region shown in Figure 1 and 2, functional kernel elements
are continuous and differentiable. However, in general, functional kernel eleEnése

N C2p
C, <Gy C1 < Cp
D D
2<C1<Cy
Ci1<ay<Cy
a<Cr<Cy
C<C 'l C<Q
C1<Cr<ay
Co<Ci<ay Co<ay<Cy
> >
0 D & 0 a D 1

Figure 1. Regions of integration in integral equations forex, and mget1(ay)
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Figure 2. Regions of integration in equations forge(a1,a) with a; < a and with a; < &
not differentiable at the boundary. This is because different orderings of clock readings may
lead to different functional kernel elemeni$.p

3.2 Numerical Computation of the Transition Kernel

In [8], the concept of subordinated Markov chains (SMCs) has been introduced for the
efficient algorithmic computation of the probability matrix P of the discrete-time Markov

chain embedded in the Markov regenerative process underlying a discrete-event stochastic
system without concurrent deterministic events. The SMC of state si is a continuous-time
Markov chain (CTMC) whose state space is given by the transitive closure of all states
reachable from si via a (possible empty) sequence of exponential events and corresponding

next state probabilitieR(

S,S €)

from s to s, we write $ 0 T -, ;.

of the GSMP. For such a sequence of exponential events

We can define a SMC for each state of the GSMP, i.e., also for states in which only
exponential events are active.

Definition (Subordinated Markov chain and subordinated reachability set):

The

continuous-time

Markov

chain { X):t=0}

with

State

spaces

SMC(S,):{sD gs O - ‘Js and state transitions corresponding to the occurrence of

exponential events is called teabordinated Markov chain (SM®©f state s The generator
matrix of SMQ s) is denoted bf;. The initial distribution is P X0)= ;§=1

Furthermore, we define the set of states from which a state anly reachable via the

occurrence of exponential events as thordinated reachability set (SR8) state s
Formally, that isSR ) :{ § $sOTH - sj}
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The probability for a state transition from statéosstate sin time t via the occurrence of
only exponential events is given by:

def

Bos(®= P3O 51= # X(= 5% (0= =17 0%0y )

where 1iTand 1; denote the i-th and j-th row and column unity-vectors, respectively, of
appropriate dimension. Using the randomization technique [7], transient state probabilities of
SMCs of (11) can computed with asymptotical effoffO; Jof@ all time points t =, 2A,,...,

MA = D. Heren; denotes the number of nonzero entries in the genépatnd ¢ the absolute

value of its maximum diagonal entry.

The following provides an intuitive explanation why elements of the transition kernel of a
GSSMC can always be determined by appropriate sums of transient state probabilities of
continuous-time Markov chains. Assuming the GSMP is at time nD in stat@hstwo
deterministic eventsg and ;) concurrrently active. Thus, the GSSMC resides in a state, say
(s,¢1,6) With ¢, < ¢, where ¢ and ¢ are clock readings associated with deterministic events
aa and @), respectively. Noting that the state of the GSMP at time (n+1)D given the state at
time nD is determined by (possibly empty) sequences of exponential events in the subintervals
((nD, nD+g], (nD+¢,, nD+g] and (nD+g, (n+1)D] and the occurrence of the deterministic
events g and @, Thus, using the property that the GSMP is time-homogeneous and by
decomposing the time interval (0,D] into three subintervals](dg,c;], and (¢,D], we can
show that the GSMP behaves in each subinterval as a CTMC. Each of these three CTMCs is
given by an SMC as defined above. Subsequently, the kernel elements of the embedded
GSSMC can be computed as summations of transient state probabilities of SMCs. It is
important to note that this holds irrespective of the number of deterministic events active in
states sand g

The following theorem states how the transition kernel of the GSSMC can be effectively
computed and constitutes the main result of the paper.

Theorem 1 (Numerical computation of the transition kernel)

Let {X(t): t=0} be a finite state space GSMP with exponential and deterministic
events. Then all elements;() of the transition kerneP(c;,c,a,a) of the
embedded GSSME Xn=0} can be computed simply by the summation of
transient state probabilities of continuous time Markov chains.

Proof: We prove this result by construction. A complete proof of Theorem 1 requires the
consideration of nine different forms of kernel elements introduced in Eq. (7) and 24
orderings of clock readings fé%3(C1,C0,&,8) as shown in Figure 2. Due to space limitations,
we spell out the derivation only for five selected forms, namely for the submai@iges
P1a(a1), Pi3(as,&), P2o(C,&), and one ordering faPs3(Cy,0,81,&). Kernel elements of other
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forms can be derived in a similar way . Recall thﬁt=>{( G n2 O} is the GSSMC that
is embedded in a GSMP at equidistant time points nD.

We write zO 1 - 2z for the state transition from state z 2b due to the occurrence of
deterministic event.e In (12) to (18), we writ¢ ,z'z ) as shorthand index of a summation
over all feasible paths of the form[£" - '.zFor ease of exposition, we assume
p(Z,z e,)=1 in the proof of Theorem 1. The extension of Egs. (15) to (18) to an arbitrary
pmf of next state probabilities(p,z, z*)Eis straight-forward; i.e., requires one additional
summation. In the following, we denote by( $e .8 . ,Sall states in which
deterministic eventeis active. By § g g0 §,, we denote all states in which both
deterministic events and ¢are active.

Let us first derive how to compute kernel elements of the submBtrix Since no
deterministic event is active in state we need not decompose the time interval (0,D] into
subintervals. Deterministic events cannot have triggered a state transition in (0,D], though,

some deterministic events may have become active and get canceled in (0,D]. Thus,
considering the SMC of stateamd using (11), we derive the kernel element as:

P = P{$ Deﬁgﬂ** %}:~Qi,sj( D (12)

That is the probability for a state transition fronptosg. Eq. (12) implies that kernel elements
p; =0 for states s SMC; &

Now consider the derivation of kernel elements of the submBis(e;). Corresponding
kernel elements are of the form(@) where a denotes the boundary of the clock reading
interval of the deterministic event newly active; see Eq. (6). Subsequently, we decompose the
time interval (O, D] into subintervals (0 @nd (&, D]. Using (11), we have:

pi(a)=H $.= 5 Gu( (M<a|S= g

:EP sDE" z} l{ﬂﬁpa §} ;3?1( a0p( B @&

with the set of intermediate statesZ4.$n  IMCErs (S Ss

(13)

Subsequently, we consider the derivation of kernel elements of the subPafaxa).
Recall that aand a denote upper bounds of clock readings of new deterministic event. Since
we have to consider two clock readings, two possible orderings may occuy <ar\ee get:
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pi(a2,)= H{ $.= 5 Gu (D=a, G <al $=
=5 3 Plsor- 2R 207 2jof 20
+3 Pl 0= 40 % g

=3 2 Pa(@)B,.(a- AUR,(D-2)* 3 T (a)0h,(D- )

(14)

With Z; = Sgen 0 § €gy)n SME9n SRSkand 2= $ &), &))" SMCi$n SRS$)s

In a similar way, for a< &, we get:

Pi(aa)= Y > Rz(a)0Rz,(a- 30Rs( B 3+ ) Pl 30R( D 2(15

7,07, 2,017,
with Z; = y())n SME §)n SRS $ and 2 as above.

Next, we consider the derivation of kernel elements of the subn@s(e,,a). If the
deterministic event scheduled in statatstime nD, denoted bye cannot be canceled, this
event occurs with probability one exactly at time nD+&gain, two possible orderings of
clock readings may occur. For< &, using (11), we get:

p(ca)=F{$.= 5 Cu(()=a] §= 5 QLI)= ¢
- 2, 2Ps o ajof e djob o
g ZZ())P{S Drsz’; A0H 2pre 8 (16)
= 2o 2P (W) @), (D-a)r 5 R 90R, (D g

For a < ¢, we get:

Pi(cvar) = A $a= 5 Gal(D<al §= 5 G(0)= g
= > D Psa(a)®,,(a-a)0p,s( D 9 (17)

(z2,22,8(j))z1LZ
with Z=SMQ(§)n 9(9?0), |eﬁ)). If the deterministic event@ may be canceled, kernel
elements of the submati¥,(c,,a) can be derived in a similar way.

Finally, let us consider the derivation of kernel elements of the subriRai(cs,c.,a,a) as
the most general case. Recall from Figure 2 that in general 24 orderings of clock regdings c
C2, &, and a are possible. In Eq. (18) we derive how to compute kernel elements of the form

P (C1,C2,a1,8) for the ordering £=< ¢; < & < & under the assumption that both deterministic
events g and & cannot be canceled.



-11-

pij(CL G280, &)
=P{Su1= 5 Gu((D<a, Gu(n)<a| $=5 G(()= ¢ G(nt)= ¢
- z Z z zr)sile(ol)tﬁfl,zz(oz_ G) mT:’zz,zg( a- ¢

(21,71,8(i)) (22,22, 6n(i) ) Z3LZ1 4 LZ
[623,24(32 - al) Ebzél,q ( D- 82) (18)
+ Z Z Z Bsi ,zl(c_L) Ehzi,zz( Q- Cl) Dbz,zg,( q- CZ) D~93,§ ( B @

(21,20,8(i) ) (22,22, €m(iy ) 231121

* z z zﬁsﬂ"zl(Q)Eﬁz'lllz(CZ_ q)mgz,zg( - (é) H—)z&q(D_az)

(21,21.8i)) (22,25, €m(iy ) 231121

Y > Ps 4 (a) By 2, (2~ @)0R, ,( D- @)
(21,71,9(i)) (22,25, €n(i))

with appropriately defined setg and z.

As shown in (12) to (18), kernel entries can be computed as summation of appropriately
selected transient state probabilities of CTMCs. |

3.3 Detection of Constant Kernel Elements

In this section, we state sufficient conditions on the building blocks of the GSMP under which
kernel elements are constant because jump probabilities of the GSSMC are independent of
clock readings. This is for example the case in (multiserver) queueing systems if the arrival
process is independent from the number of customers in the queue. For arbitrary GSMPs, a
necessary condition for kernel elements of the GSSMC to be constant is that clock readings of
new deterministic events at time (n+1)D do not depend on the occurrence of exponential
events in [nD, D). For GSMPs with at most two deterministic events concurrently active, this
implies @ (c1,a) = pj(c1) and R(c1,Cz.a1,8) = Pj(C1,C2).

Recall that 23 1) . zdenotes the state transition from state z'tdue to the occurrence
of deterministic event g. Recall also that we write; @ﬁﬁ - j dor a sequence of

exponential events from; sto g in time t. Putting it together, we write a path
s O eﬁ(i;lﬂ*_, zOTH - 2 Dgﬁﬁﬂ*a 5 for a sequence of exponential events in (Dfatlowed by

.
the occurrence of deterministic evenfy end another sequence of exponential events in
(c1, D). If for each such path holds (1S, then the clock reading of the new deterministic

event does not depend on the occurrence of exponential events in [nD, (n+1)D).

We derive conditions on the structure of the GSMP, so that the jump probability
corresponding to a path S eﬁ(i;lﬂ*_, zOTH - 2 Dgﬁﬁﬂ*a § leads to the same jump probability

-
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ass O z with 2 = s;- Noting that in the latter case the corresponding transient state
D
probability of the SMC is independent of the clock readinghe kernel element is constant.

Consider two states; and $ 0 Syen. A prerequisite for the computation of the
corresponding kernel element according to (16) constitutes the derivation of all feasible paths

S; D?Cfﬁ*q zO %0 - 2 D;ﬁ%ﬂ § from the reachability graph of the GSMP. We group all
1 L1

such paths into classes such that in each class, paths comprise of the same number of events,

say L. That is the deterministic evepj @nd L-1 occurrences of exponential events @). If
one of the subpaths [ M zorz O - §; contains a cycle, we consider just one round

of this cycle. For all path of class m (m = 1,2,..,M), we define a rectangular matrix

~

So %1 v 81§ def def
def S0 $1 SL| wWith§po=9§ andig. = 8

Fm = (k)= fork=1,2,...K (19)

%0 X1 v RL-1 BL
Theorem 2 states sufficient conditions on the building blocks of the GSMP under which
the proportionatejump probability pjm, corresponding to clads, is constant. If for some,s

s U Sier1 the proportionate jump probabilities of all classes are constant, then the kernel
element p(c,) is constant, too, since applying (161)( p)® zm ijm P

Theorem 2 (Conditions under which kernel elements are constant)

Let P(c;,C2,8,8) be the transition kernel of the embedded GSSMG: r% 0}
and let sand $ 0 Syen With the matrixl',, = (K,l) representing all paths of
class m. Assume that the deterministic evgnttannot be canceled in any path| of
"m. Then, the corresponding proportionate jump probabilityip constant, if the
following conditions hold:

(i) The rows ofl , can be ordered such that the deterministic evgnbecurs
at position k (k = 1,2,...,K). That is each pathlgf contains the state
transitions, ., (- §,.. This condition implies that K = L in (19).

(i)  Consider the ordering of (i) fdr., the sets of exponential events scheduled
in § - and in§, and corresponding next state probabilities are equal.
That is for k = 1,2,..,L this is:

E(Sk1) N Bop™ B Ri) N Bopand fiTRics €)= NG
(i) Consider the ordering of (i) foF, the multi-set of exponential events
scheduled and occurring in the k-th rowlgf up to position k (and after
position k) must be a subset (or superset, respectively) of the corresppnding
multi-set in the (k+1)-th row. Furthermore, corresponding next state
probabilities must be equal. Formally, for k = 1,2,..., L-1 this is:
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{E(i,o)n Boxpr s B Rk-1) N Eexp}D{ Eis10)n R Eisg)n 'éx;
and {0 Ru-2f Of Rraor Bae1)

{E(3k) 0 Boprs B RL) N Boxgt O Eisagen) 0 Bxpes EiSan) 0 B
and {Q*<k é,L}D{ Rkt s :@+J,L}

Note that condition (ii) implies that for each path[gf the statess ,; and § can be
combined yielding one path of exponential eveqts i s; as illustrated in Figure 3.
D

Figure 3. Combining states in SMCs leading to constant jump probabilities
Proof: We have to show that the proportionate jump probabilifyd) is independent of the
clock reading ¢ Assuming the paths &f, are ordered according to condition (i). Then, using
(16) the proportionate jump probability.pis given by:
L L
Pim(c) =D RS, Deﬁgﬂ - ~§,k—1}[|{~l§,k Ot - #}: Y P (809 s B (20)
k=1 k=1

D_Cl

Because of condition (ii), the same set of exponential events is scheduled irggtatasd

S« and corresponding next state probabilities are equal for k = 1,2,....L.. Thus, we can
combine the two states to one stateas illustrated in Figure 3. Subsequently, we can rewrite
(20) as:

L
Pim(c) =Y B 5 ()T s(D- Q) (21)
k=1

Recall that according to condition (iii), each path contains the same (multi)-set of L-1
scheduled and occurring exponential events and corresponding next state probabilities are
equal. Note that Eq. (21) can be interpreted as the convolution of two exponential phase-type
random variables given by the exponential events occurring in](@nd in (g, D]. Since
according to (i) inl, the deterministic eventge occurs exactly once at position k, the
summation in Eq. (21) is taken over all possible cases. Thus, the jump probahilgygpen

by the probability that the considered L-1 exponential events occur in (0,D]. This immediately

leads to pu( = = 05, ,( P n
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As already mentioned, kernel elements of the fof(e:fe,,a,8) = pj(C1,c2) Mmay also be
constant. In fact, assuming & ¢, kernel elements jjc1,c;,a,8) are constant, if the

summation according to (18) of all paths of the form
s O eﬁ(i;lﬂ*q z, 0T - 7 Dceﬁﬁﬂ:_, z, 0T - 7, D[‘fjig*a 5 leads to the same jump probability
2L L2

ass; U ?l:ﬁ)ﬂ*q z; with 3 = z, andz; = ;. As above, we group all feasible paths of this form

into classes of equal length and define for each class a rectangular matrix according to (19).
Due to space limitations, we just state informally conditions ensuring that a proportionate
jump probability g, is independent of the clock readings and ¢. Assume that the
deterministic eventsg and @ cannot be canceled in any pathlef. Subsequently, the
proportionate jump probability of class m,pis constant, if the following conditions hold:
(iv) The rows ofl, can be ordered such that the deterministic evegtsausd &
occur at positions k and | with k = 1,2,...,.L-1 and | = k+1,...,L. This condition
implies thatk = %L (L —-1) in (19).
(v) The (multi)-set of L-2 exponential events which occur is equal in each pagh. of
(vi) The sets of exponential events scheduled in sigtesn which a deterministic
events occurs and the next stafg are the same and corresponding next state
probabilities are equal.

3.4 Detection of Symmetric State Probabilities

When in the GSSMC Xclock readings of two concurrent deterministic evepisagd ;)

are always set in an equal way, the time-dependent and stationary probah%i’l‘i)t(ea@ &)

and T, (ay, &) are symmetric functions with respect toamd a. This implies that for ;O

Stz With E(s1) N Eyet :{ &) B )} for each feasible path of the form
sO0MW_.z0M -5 with Ez)n Eier={@) exits a corresponding path

5 0= 2, O™ - 5 with E(z)n Eiet={ Gy} Such thatr(a,,a)=11(a, g). Similar
conditions can be derived for other forms of feasible paths to stat&sg. Recall that we

write § O e s; For a possibly empty sequence of exponential events froonss For a

state transition from; $0 § due to the occurrence of exactly one exponential event, we write
s 0P~ s;- In the most general setting, these conditions are met when the reachability graph
of the GSMP is isomorphic to the reachability graph of a GSMP in which all arcs labeled with
g are replaced by arcs labelegjeand vice-versa. However, in general checking graph
isomorphism may require even for weighted directed graphs (i.e., reachability graphs of
GSMPs) a high computational effort. Theorem 3 states sufficient condition on the building
blocks of the GSMP that just depend on state transitions to/from immediate neighbor states in
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Theorem 3 (Conditions under which state probabilities are symmetric)

Let {X(t): t=0} be a finite state space GSMP with exponential and deterministic
events. Consider a statels Syerz In Which the both deterministic eventg end
emg) are concurrently active. Let,zz, 0 Syen With E(z)n Edetz{e@)} and
E(z5) N Eger={ &ng)}- Then, j(ay, &) = (&, a), if the following conditions
are met:

(i) For each s O Sy with transiton s 0%P- z, exists a transition
s U PP_ z, which comprises of the same exponential event e* and equal
next state probability (fJ ; s 8.

(i) For z, z O Syen as defined above with transition 2P, S, exists a
transition z O %P~ s; which comprises of the same exponential event e*
and equal next state probabilitiegfJp, Z)e ([Jp, #).durthermore, for
each transition 1z Y . zexists a corresponding transitiop [Z M- |z
with z' O Syetr.

(i) For each s 0 Sy With E(§)n Ej :{ &y B )} and transitions
5 07 - 2 and $ 0 717 - 2, holds either ER-{ &} = EF-{ 10!
with z3, 7, O Sgets OF 21 = 2, With 27,75 O Syerz That former condition says
that the exponential events scheduled in the new state reached |y the
occurrence of one of the deterministic events and corresponding next state
probabilities are the same.

the reachability graph. Thus, these conditions can be checked easily. Note, these conditions
apply to all multiserver queueing systems (e.g., MAP/D/2/K). However, there exists GSMPs
of the considered class in which state probabilities are symmetric, even if the conditions of
Theorem 3 are not met. Due to space limitations, we omit the proof of this theorem.

4  Impact of Theorems for the Efficient Numerical Analysis

4.1 The System of Integral Equations

In order to illustrate the impact of results presented in the previous section, we recall the
systems of time-dependent and stationary equations of the GSSMC as introduced in [9], [10].
To write these systems of Fredholm integral equations in vector notation, we define three
vectors of state probabilities for the states Qf, Syer1, and, Qero respectively.

0 = (0,0, i)

(@) = (M, 1(8), T, (@), T, () (22)
0@y, ) = (T a( 3 ) T (3 B T (3 9)
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To further simplify the notation in the systems of integral equation (17) to (19), we
introduce two vectors®(c,) and £")(c,,c,) for the derivatives of state probabilities as:
y® (cl)déf—dm:?)ncfcl) and 2 (c, g)dif—azr‘é%i‘iéii’ = 23)
As shown in [9], the GSSMC allows the numerical analysis of GSMPs with different values
D, for clock settings of deterministic events. However, for ease of exposition, we recall just
the systems of time-dependent and stationary equations of the GSSMC under the restriction
that all deterministic events have the same delay D and that concurrent deterministic events
cannot be canceled. Then, using the submatRge} of the transition kernel defined in (7)
together with (22) and (23), time-dependent state probabilities for the GSMP at instants of
time nD are given by [10]:

D DcCy
i) =L Py + [y () Poy(cdet [ [ 27(6, 6) P 6 o)+ (6 QIPaf 6 § dg do(24)
0 00

= D
G (8) = T PPro(@) + [ Y ()P4 ¢y &) de [ P 9Pu( & 9 de
0 3
+ [2"(c;, ) Pay(cy cp @)+ V(6 QP 3{ G G @ dg ge (25)
00
D&
+ [2V(c;, ) Py € @)+ £7( 6 QP of 0¢1,a)dg dg
3 0

e (ay., a2):n(er>]()p P15( &y, 32)*‘_[ (3P4 G a d?‘j © (19Po3( 16 12 2 dc

0 Cl
+H 2 e, ) Pacy e 3+ P (6 QP2 6 g 3 9 dggc (26)
00
+[[27(c, )Py 6, & )+ D( 6 9P § £ 2 # dege
a0
fora, <a,
T (31, 3) = T Py, &)+ | Y7( QP24 G & 3 d@‘_[ 9 (13Pss( 1€ 12 ge
0 2
+[ [2(c, ) Pas(cy Cp 8, 3+ (6 QP 3f 6 g @ @ dggc (27)
00

[ [2(e, ) Pag(crer & @ F 2V (6.6 Pa3(©.6.a, 3) de dc

a20
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fora,<a
where 0< ag,8 < D and ey (0) = Ttyep(0,C5) = T 4ep (¢,0) = 0.

Taking the limits n- o in (24) to (27) and using some algebra, we derive a system of
Fredholm integral equations in:

DC2

D
Oznexpmpll_|)+jY(CD[P21(CDd01+_[_[ 16, 6)P3(Gg &+ €6 9P3{ G q dg dd28)
0 00

=R D
0= Tleyp Pip(ay) + [ M) IPoA € @)= 1) dot [ ¥ 9)Poy( 6 @ de
0 1

& Co

+ [ J2(e, ) Pap(cy cp @)+ 26 QP34 G & § dg e (29)
00
Do

+[ [ 2(c, &) Paal(cy o a)+ €0 QIPaf 0 & @ dg de

a10

OznexpDP13(alia2)+J-X©DP23(ck & &) d@_[ §EPs( ¢ 8 A dc
0 =Y

3 Co

+] [z, &) Pss(cy Cray @)-1)+ £6 QP 2 6 G g @-1) dggc (30)
00

+[ [z, ) Pas(cy ¢p & )= 1)+ £ & QP 5f G 163y, ) dg dg

a0

fora, <a

0=T1,, @y 3)+ | MOP,(Ga, @) de | §)Pu( cad de

+ffz(cl,cz)E(JP33(cp Ca, a)-l)+ £6 QP{ 6 ¢ g 31) dcdc (31)

aay

+[2(c, )Py, 08, @) 26 OTP ¢ ¢ 3 p-1)dedg

a, 0
fora,<a

where 0< a,8 < D and iy (0) = Ttyep(0,C5) = Tt 4o (€1,0) = 0. Having solved (28) to (31)
for Texp, YM(c;) and 2M)(c;,c,), the stationary or time-averaged state probabilities
(D), and Tt ( D D) of the GSSMC are derived by numerical integration.

Applying Theorem 3, we can detect when state probabilities are symmetric with respect to
clocks of concurrent deterministic events. This leads Ttday, &) =T (&, a) for
0 <a,a» < D. As a consequence, Egs. (27) and (31) of the systems of integral equations (24)
to (27) and (28) to (31) can be omitted in the numerical analysis of the corresponding GSMP.
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4.2 Easy Numerical Computation of the Transition Kernel

The result that all elements of the transition kernel of the GSSMC can be expressed by
summation of transient state probabilities of CTMCs (Theorem 1) reduces the computation of
jump probabilities of a stochastic process with continuous state space, i.e., a GSSMC to
transient analysis of a number of simple stochastic processes, i.e., the SMCs. An efficient
numerical method for transient analysis of CTMCs is the randomization technique [7]. Note
that the computation of the transient state probability vectt®) of SMQ's) by
randomization also yields transient state probability veat@sfor O <t < D as intermediate
results. As a consequence, the numerical computation of the transition kernel of the GSSMC
requires asymptotically the same effort as the numerical computation of the probability matrix
P of the discrete-time Markov chain embedded in the Markov regenerative process underlying
discrete-event systems without concurrent deterministic events [1], [3], [8].

To illustrate the concept of SMCs, we consider a finite-capacity multiserver queueing
systems. The system comprises of two identical servers with constant service time D and one
queue with limited capacity K. Customers arrive according to Poisson distribukigns,,(

..»An) Whose parameter is controlled by an N-state CTMC with birth-death structure, i.e, a
Markov modulated Poisson process. When an arriving customer finds an empty system, it
enters server 1 with probability p and server 2 with (1-p). This queueing system is known as
the MMPP/D/2/K queue. The state of the corresponding GSMP is determined by the number
of customers in the system and by the state of the arrival process. When just a single customer
resides in the system, we distinguish whether this customer is served at server 1 or server 2.
The number of states of the GSSMC underlying the MMPP/D/2/K is givei(Ky+2). In N

states are only exponential events active whereas in 2N states exactly one deterministic event
is active. The number of states in which two deterministic events are concurrently active is
given byN(K —-1). Assuming N = 2, Figure 4 shows the reachability graph of the GSMP

Figure 4. Reachability graph of the GSMP underlying the MMPP/D/2/K queue
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Figure 5. Subordinated Markov chain of states 6 and 7 of the MMPP/D/2/K queue

underlying the MMPP/D/2/K queue. The deterministic service is represented by arcs labeled
with events ¢ and @. State changes due to exponential events are labeled with their rate
parameterst, 3, A1, andA,. Figure 5 shows the SMCs of states 6 and 7. Applying Theorem 3,
we detect that for p % holdsT (ay, &) = 15 ( &, a) for all states; <7 Syerz

4.3 Exploitation of Constant Kernel Elements

The detection of constant kernel elements (Theorem 2) implies that corresponding integral
expressions in the systems of Fredholm equations (24) to (27) and (28) to (31) vanish. Table 1
shows the number of nonzero entries of the transition kernel of the GSSMC underlying the
MMPP/D/2/K queue for increasing model size; i.e., K = 1000 to 10000 and provides
percentages for each of the five different types of kernel elements. Note that this table shows
the number of kernel elements whose analytic expressions are nonzero. The employment of
dynamic sparsing of kernel elements in the practical computational scheme leads to a
substantial reduction of nonzero elements and, thus, of memory requirements. From Table 1
we observed that for this class of GSMP, i.e., GSMPs corresponding to multiserver queueing

States of Nonzero | Constant | Functionals in Functionals in Functionals in Functionals in
GSSMC | entries entries 1 variable 2 variables |3 variables |4 variables
2004 2004997 99,30 % 0,20 % 0,49 % P08 % 1,010 %
4008 8009997 99,65 % 0,10 % 0,25 % BB % | 2510°%
6012 18014997 99,77 % 0,07 % 0,17 % 208 % 1,1:10° %
8016 32019997 99,83 % 0,05 % 0,12 % 106 % | 6,310°%
10020 50024997 99,86 % 0,04 % 0,10 % 10 % | 4,010°%
12024 72029997 99,88 % 0,03 % 0,08 % B8P % | 2,810°%
14028 98034997 99,90 % 0,03 % 0,07 % BP% | 2,010°%
16032 | 128039997 99,91 % 0,02 % 0,06 % -B0S % 1,7.10° %
18036 | 162044997 99,92 % 0,02 % 0,06 % B0 % 1,210° %
20040 | 200049997 99,93 % 0,02 % 0,05 % P08 % 1,010° %

Table 1. Classification of elements of the transition kernel of MMPP/D/2/K
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systems, more than 99% of nonzero kernel elements are constant. As shown in [10], for quite
complex GSMPs (i.e., MMPP/D/2/K queue with K = 10,000 for mission time T = 100) the
solution of the system of time-dependent equations requires on a modern workstation about
26 minutes of CPU time, the solution of the corresponding system of stationary equations
requires less than 5 minutes of CPU time. Thus, for GSMPs underlying finite-capacity
multiserver queueing systems with deterministic service, the exploitation of constant kernel
elements in the system of integral equations is key for their highly efficient transient and
steady-state analysis.

Conclusions

This paper presented methodological results that provide the foundation for the cost-effective
algorithmic generation of the transition kernel of the general state space Markov chain
(GSSMC) underlying a GSMP with exponential and deterministic events. Key contributions
constitute the formal proof that kernel elements can always be computed by appropriate
summation of transient state probabilities of continuous-time Markov chains (Theorem 1).
Thus, the computation of the transition kernel of the GSSMC requires asymptotically the
same effort as the computation of the probability matrix of the discrete-time Markov chain
embedded in the Markov regenerative process underlying discrete-event system without
concurrent deterministic events. Furthermore, we derived conditions on the building blocks of
the GSMP under which kernel elements are constant; i.e., are independent of clock readings
(Theorem 2). We also derive conditions on the building blocks of GSMPs for which state
probabilities T (ay, &) are symmetric with respect to clock readings of deterministic events
concurrently active (Theorem 3).

We would like to point out that these properties are valid for GSSMCs with arbitrarily
many (i.e., also more than two) deterministic events concurrently active. The exploitation of
these properties of the GSSMC considerably reduces the computing time and memory
requirements for the numerical solution of the systems of Fredholm integral equations which
constitute the systems of time-dependent and stationary equations of the considered class of
GSMPs [9], [10]. As a consequence, the implementation of an algorithmic kernel generation
based on the presented results together with the already implemented solvers introduced in
[9], [10] allow the numerical analysis of complex discrete-event stochastic systems with
concurrent deterministic events.
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