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Abstract

This paper present methodological results that allow the cost-effective numerical

analysis of finite-state generalized semi-Markov processes (GSMPs) with

exponential and deterministic events by an embedded general state space Markov

chain (GSSMC). Key contributions constitute the formal proof that elements of

the transition kernel of the GSSMC can always be computed by appropriate

summation of transient state probabilities of continuous-time Markov chains and

the derivation of conditions under which kernel elements are constant.

Furthermore, we derive conditions on the building blocks of the GSMP for which

state probabilities π i a a1 2,1 6 are symmetric in respect to clock readings of

deterministic events concurrently active. The exploitation of these properties is the

key driver to the cost-effective time-dependent and stationary analysis of the

considered class of GSMPs. The techniques of this paper are applicable to

networks of queues, stochastic Petri nets, time-enhanced state charts and UML

specifications, and other discrete-event stochastic systems with an underlying

stochastic process that can be represented as a GSMP with exponential and

deterministic events.

Keywords: Techniques and algorithms for stochastic modeling,

discrete-event stochastic systems with deterministic delays,

general state space Markov chains,

numerical transient analysis of continuous-time Markov chains,

Fredholm integral equations with separable kernel.



Numerical Analysis of Generalized Semi-Markov Processes

Abstract
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exponential and deterministic events by an embedded general state space Markov

chain (GSSMC). Key contributions constitute the formal proof that elements of

the transition kernel of the GSSMC can always be computed by appropriate

summation of transient state probabilities of continuous-time Markov chains and

the derivation of conditions under which kernel elements are constant.

Furthermore, we derive conditions on the building blocks of the GSMP for which

state probabilities π i a a1 2,1 6 are symmetric in respect to clock readings of

deterministic events concurrently active. The exploitation of these properties is the

key driver to the cost-effective time-dependent and stationary analysis of the

considered class of GSMPs. The techniques of this paper are applicable to

networks of queues, stochastic Petri nets, time-enhanced state charts and UML

specifications, and other discrete-event stochastic systems with an underlying

stochastic process that can be represented as a GSMP with exponential and

deterministic events.

1 Introduction

Since many activities associated with computer and communication systems have a constant

duration, performance and dependability models of such systems should allow representation

of both stochastic and deterministic timing. Activities of computer systems which have a

constant duration include memory access times, transfer times for data packets of fixed size,

time-outs, and repair times of components. This paper deals with numerical methods for

analysis of discrete-event systems with stochastic and deterministic timing. A discrete-event

stochastic system makes state transitions when events associated with the occupied state

occur; events occur only at an increasing sequence of random times. The underlying stochastic

process of a discrete-event stochastic system records the state of the system as it evolves over

continuous time. The usual model for this process is a generalized semi-Markov process

(GSMP); see e.g., Glasserman and Yao [5], Glynn [6], Shedler [11], and Whitt [12],

In this paper, we present methodological results that allow the cost-effective numerical

analysis of finite-state generalized semi-Markov processes (GSMPs) with exponential and

deterministic events by an embedded general state space Markov chain (GSSMC). Lindemann

and Shedler introduced a GSSMC embedded at equidistant time points nD (n=1,2,..) of the

continuous-time GSMP and showed that both the GSMP and the GSSMC have the same
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stationary or time-averaged distributions [9]. Numerical solvers for the system of

multidimensional Fredholm integral equations that constitute the time-dependent and

stationary equations of the GSSMC have recently been presented [10].

To make this GSSMC approach effectively applicable in performance and dependability

modeling projects at large, the remaining open problem constitutes the algorithmic generation

of the simplest form of the transition kernel of this GSSMC given the building blocks of the

GSMP. The transition kernel of the GSSMC specifies one-step jump probabilities from a

given state at instant of time nD to all reachable new states at instant of time (n+1)D. In

general, elements of the transition kernel of a GSSMC are functions of clock readings

associated with the current state and intervals for clock readings associated with the new state.

This paper presents three theorems that provide the foundation for such an algorithmic

generation of the transition kernel. Key contributions constitute the formal proof that kernel

elements can always be computed by summation of transient state probabilities of continuous-

time Markov chains (Theorem 1) and the derivation of conditions on the building blocks of

the GSMP under which kernel elements are constant; i.e., are not functions of clock readings

(Theorem 2). Furthermore, we derive conditions on the building blocks of the GSMP for

which state probabilities π i a a1 2,1 6 are symmetric in respect to clock readings of deterministic

events concurrently active (Theorem 3). That is π πi ia a a a1 2 2 1, ,1 6 1 6= . The exploitation of

these properties of the GSSMC considerably reduces the computing time and memory

requirements for the numerical solution of the system of Fredholm integral equations. Thus,

the presented methodology constitutes the key driver for the cost-effective numerical analysis

of GSMPs with large state space (e.g., 100,000 states) and several deterministic events

concurrently active. The techniques of this paper are applicable to networks of queues,

deterministic and stochastic Petri nets [1], stochastic process algebras [2], stochastic automata

networks [6], time-enhanced state charts and UML specifications, and other discrete-event

stochastic systems with an underlying stochastic process that can be represented as a GSMP

with exponential and deterministic events.

The remainder of this paper is organized as follows. In Section 2 we show how to define

the GSSMC underlying a GSMP with exponential and deterministic events and introduce the

notation. Section 3 first recalls the form of the transition kernel. Then, we prove three

theorems on properties of the GSSMC. The exploitation of these properties is key to the cost-

effective numerical solution of the systems of Fredholm integral equations representing the

time-dependent and stationary equations of the considered class of GSMPs. In Section 4, we

illustrate the impact of these theorems. Finally, concluding remarks are given.
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2 Derivation of the Embedded General State Space Markov Chain

A generalized semi-Markov process (GSMP) is a continuous-time stochastic process

{S(t): t ≥ 0} that makes a state transition when one or more “events” associated with the

occupied state occur. Events associated with a state compete to trigger the next state

transition, and each set of trigger events has its own distribution for determining the next

state. At each state transition of the GSMP, new events may be scheduled. For each of these

new events, a clock indicating the time until the event is scheduled to occur is set according to

an independent (stochastic) mechanism. I.e., for each new event a clock reading is generated

according to its clock setting distribution. For each scheduled event which does not trigger a

state transition but is still scheduled in the next state, its clock continues to run. If an event is

no longer scheduled in the next state, it is canceled, and the corresponding clock reading is

discarded. In general, in a GSMP events may occur simultaneously resulting in a set of trigger

events E* rather than in a unique trigger event e* [11].

Let E = {e1, e2,..., eK} be a finite set of events and S be a finite set of states. For a state

s ∈S, let s E s� 0 5 be a mapping from the set S to the nonempty subsets of E; E(s) denotes the

set of all events that are scheduled to occur when the process is in state s. When the process is

in state s, the (simultaneous) occurrence of one or more events of  E(s) triggers a state

transition to a state ′s . Denote the probability that the new state is ′s  given that the event e*

and the set of Events E* occur in state s by p s s e′, , *3 8  and p s s E′, , *3 8, respectively. For each s

∈ S and e* ∈ E(s) or E* ⊆ E(s), we assume that p s e⋅; , *0 5 or p s E⋅; , *0 5 is a probability mass

function. Associated with each event is a clock with a reading that records the remaining time

until the event is scheduled to trigger a state transition. For si ∈ S, define the set C(i) of

possible clock-reading vectors in state si as:

C i c c c c e E iK k k k0 5 1 6 0 5< A= ≥ > ∈1 0 0,..., :  and  if and only if  (1)

The k-th component of a clock-reading vector c = (c1, c2,...,cK) is the clock reading associated

with event ek.

In this paper, we consider finite-state, time-homogeneous GSMPs with exponential and

deterministic clock setting distributions. We divide the set of events E = Eexp ∪ Edet and

enumerate the deterministic events by e1, e2,…,eM. Subsequently, we define Dm to be the

firing delay of event em (1 ≤ m ≤ M). For the analysis of this class of GSMPs, in [9] a

discrete-time general state space Markov chain (GSSMC) has been introduced. According to

[9], we define D = min{D1, D2,…,DM}. To derive this GSSMC, we define a discrete-time

process Xn = {X(nD): n ≥ 0} by observing the GSMP {S(t): t ≥ 0} at a sequence {nD: n ≥ 0}

of fixed times

X S C C C Mn n n n n= , , , ,1 20 5 0 5 0 51 6� (2)
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Here, Sn represents the state of the GSMP and Cn(m) represents the clock reading of

deterministic event em (1 ≤ m ≤ M) at instant of time nD. When deterministic event em is not

active at time nD, we set C mn( ) = 0 . The memoryless property of the exponential distribution

implies that {X(nD): n ≥ 0} is a GSSMC, i.e., it satisfies the Markov property. That is:

P X X X P Xn n n n n+ − +∈ = ∈1 1 0 1( ( X  X, , ,�

for any appropriately defined set (. For ease of exposition, we restrict the discussion to

GSMPs in which at most two deterministic events may be concurrently enabled. However, we

would like to point out that the theorems presented in Section 3 can be extended in a straight-

forward way for GSMPs with more than two deterministic events concurrently active.

The subset of states of the GSSMC in which only exponential events are enabled is

denoted by Sexp. Similarly, the subsets of states in which one deterministic event and two

deterministic events are (concurrently) enabled are denoted by Sdet1 and Sdet2, respectively.

Subsequently, without loss of generality, we enumerate the states of the GSMP as follows:

Sexp ={s1, s2,…, sN1}
Sdet1 ={sN1+1, sN1+2,…, sN1+N2} (3)
Sdet2 ={sN1+N2+1, sN1+N2+2,…, sN}

We denote the index of the deterministic event(s) enabled in a state si by l(i) and m(i),

respectively, and neglect other zero-valued clock readings in C(i). Given the initial

distribution of the GSMP, denoted by X0 and using (2), we define for the GSSMC Xn with

two deterministic events concurrently enabled three kinds of time-dependent state

probabilities:

π i
n

n iP S s X( ) = = 0< A for si ∈ Sexp

π i
n

n i na P S s C l i a X( ) , ( )1 1 01 6 0 5< A= = ≤ for si ∈ Sdet1 (4)

π i
n

n i n na a P S s C l i a C m i a X( ) , , ( ) , ( )1 2 1 2 01 6 0 5 0 5< A= = ≤ ≤ for si ∈ Sdet2

for n = 1,2,... and 0 < a1,a2 ≤ D.

Subsequently, the transient state probabilities of the GSMP at instants of time t = nD are given

by π i
n( )  for si ∈ Sexp, π i

n
l iD( )
( )3 8 for si ∈ Sdet1 and, π i

n
l i m iD D( )
( ) ( ),3 8 for si ∈

Sdet2, respectively. Corresponding stationary or time-averaged state probabilities of the GSMP

are denoted as π π πi i l i i l i m iD and D D, , ,( ) ( ) ( )3 8 3 8.

3 Theorems on Properties of the General State Space Markov Chain

3.1 General Form of the Transition Kernel

A GSSMC is completely specified by a transition kernel (heuristically, this is a family of

probability matrices) and an initial distribution at time t = 0. The transition kernel of the



-5-

GSSMC specifies one-step jump probabilities from a given state at instant of time nD to all

reachable new states at instant of time (n+1)D. As for an ordinary discrete-time Markov chain,

for all states sj not reachable from si corresponding jump probabilities pij(.) are zero. In

general, elements of the transition kernel of a GSSMC are functions of clock readings

associated with the current state si and the new state sj. In this section, we present three

theorems on properties of the transition kernel of the GSSMC.

The transition kernel of the GSSMC X Sn n n= ≥, :C1 6< A n 0  constitutes a functional matrix

of the form P c A( , ). In general, the elements of the transition kernel P c A( , ) of the GSSMC

have the form:

p P X s sij n j n i( , ) ( , )c A A c= ∈ × =+1 = BJ L X (5)

Restricting the discussion to GSMPs with at most two deterministic events concurrently

active, the vector of old clock readings c and the set A for intervals of new clock readings are

given by:

c c= =
∅ ∈
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∈
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Thus, for GSMPs with at most two deterministic events concurrently active, the transition

kernel of the GSSMC can be expressed by a functional matrix P(c1,c2,a1,a2). Subsequently, an

element of this kernel pij(.) is in general a function in four variables c1, c2, a1, and a2.

However, we will observe that a large number of kernel elements are constant; i.e.,

pij(c1,c2,a1,a2) = pij . Furthermore, for most functional kernel elements new clock readings need

not be considered; i.e., pij(c1,c2,a1,a2) = pij(c1,c2).
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(7)

Equation (7) shows the general form of the kernel P(c1,c2,a1,a2) as a composition of nine

submatrices Pij (.) of appropriate dimension using (5) and (6). In (7), the submatrix P11

represents state transition among states of Sexp, P12(a1) represents state transitions from states
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of Sexp to states of Sdet1, and P13(a1,a2) represents state transitions from states of Sexp to states

of Sdet2. Furthermore, submatrix P22(c1,a1) represents state transitions among states of Sdet1 and

P21(c1) represents state transitions from states of Sdet1 to states of Sexp. The submatrices

P23(c1,a1,a2) represents state transitions from states of Sdet1 to states of Sdet2, respectively. State

transitions from states of Sdet2 to states of Sdet1 and Sexp are represented by the submatrices

P32(c1,c2,a1) and P31(c1,c2). The submatrix P33(c1,c2,a1,a2) represents state transitions among

states of Sdet2.

For kernel elements of P33(c1,c2,a1,a2), in general, there may exist 24 possible orderings for

clock readings c1, c2, a1, and a2. These orderings immediately lead to the regions of integration

in the system of integral equations presented in Section 4.1. Figure 1 shows the two possible

orderings for kernel elements in P31(c1,c2) and the six possible subregions for elements in

P32(c1,c2,a1). Finally, Figure 2 shows the 24 subregions for kernel elements in P33(c1,c2,a1,a2).

However, when deterministic events el(i) and em(i) associated with state si cannot be canceled,

only the following eight orderings of clock readings may occur:

(1) 0 < c1 < c2 ≤ a1 ≤ a2 (2) 0 < c2 < c1 ≤ a1 ≤ a2

(3) 0 < c1 ≤ a1 < c2 ≤ a2 (4) 0 < c2 ≤ a1 < c1 ≤ a2

(5) 0 < c1 < c2 ≤ a2 ≤ a1 (6) 0 < c2 < c1 ≤ a2 ≤ a1

(7) 0 < c1 ≤ a2 < c2 ≤ a1 (8) 0 < c2 ≤ a2 < c1 ≤ a1

Furthermore, if state probability Si(a1,a2) is symmetric with respect to a1 and a2 and the

deterministic events el(i) and em(i) cannot be canceled, only the orderings (1) to (4) have to be

considered. Note that within each region shown in Figure 1 and 2, functional kernel elements

are continuous and differentiable. However, in general, functional kernel elements pij(.) are

D

D

c2

c1

c1 � c2

c2 � c1

0       

D

D

a1

a1

c2

c1

c1 � c2

c2 � c1

0

c1�c2�a1

c2�c1�a1

c1�a1�c2

c2�a1�c1

a1�c1�c2

a1�c2�c1

Figure 1. Regions of integration in integral equations for Sexp and Sdet1(a1)
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D

D
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0
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D

D
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a2

a2

c2

c1

c1 � c2

c2 � c1

0

c1�c2�a2�a1

a2�c1�c2�a1

a1�c1a2�c1�a1�c2c1�a2�a1�c2

c2�c1�a2�a1 c2�a2�c1�a1

a2�c2�c1�a1

c2�a2�

a2�c2�

a1�c2

c2�a1�c1

a2�a1�c1

c1�a2�c2�a1

Figure 2. Regions of integration in equations for Sdet2(a1,a2) with a1 � a2 and with a2 � a1

not differentiable at the boundary. This is because different orderings of clock readings may

lead to different functional kernel elements pij(.).

3.2 Numerical Computation of the Transition Kernel

In [8], the concept of subordinated Markov chains (SMCs) has been introduced for the

efficient algorithmic computation of the probability matrix P of the discrete-time Markov

chain embedded in the Markov regenerative process underlying a discrete-event stochastic

system without concurrent deterministic events. The SMC of state si is a continuous-time

Markov chain (CTMC) whose state space is given by the transitive closure of all states

reachable from si via a (possible empty) sequence of exponential events and corresponding

next state probabilities p s s e′, , *0 5 of the GSMP. For such a sequence of exponential events

from si to sj, we write si
exp* → sj .

We can define a SMC for each state of the GSMP, i.e., also for states in which only
exponential events are active.

Definition (Subordinated Markov chain and subordinated reachability set):

The continuous-time Markov chain X ti ( ): t ≥ 0; @ with state spaces

SMC s s S si1 6 J L= ∈  → si
exp*  and state transitions corresponding to the occurrence of

exponential events is called the subordinated Markov chain (SMC) of state si. The generator

matrix of SMC si1 6  is denoted by Qi. The initial distribution is P X si i( )0 1= =; @ .

Furthermore, we define the set of states from which a state sj is only reachable via the

occurrence of exponential events as the subordinated reachability set (SRS) of state sj.

Formally, that is SRS s s S j3 8 J L= ∈  → s sj
exp*
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The probability for a state transition from state si to state sj in time t via the occurrence of

only exponential events is given by:

~ ( ) ( ),
exp*p t P s s P X t s s es s

def

i
t

j i j i i i
T t

ji j
i0 5 > C=  →%&'

()* = = = = ⋅ ⋅  X 0 1 1Q (11)

where 1i
Tand 1j denote the i-th and j-th row and column unity-vectors, respectively, of

appropriate dimension. Using the randomization technique [7], transient state probabilities of

SMCs of (11) can computed with asymptotical effort O q Di iη1 6 for all time points t = ∆, 2∆,,...,

M∆ = D. Here, ηi denotes the number of nonzero entries in the generator Qi and qi the absolute

value of its maximum diagonal entry.

The following provides an intuitive explanation why elements of the transition kernel of a

GSSMC can always be determined by appropriate sums of transient state probabilities of

continuous-time Markov chains. Assuming the GSMP is at time nD in state si with two

deterministic events el(i) and em(i) concurrrently active. Thus, the GSSMC resides in a state, say

(si,c1,c2) with c1 ≤ c2, where c1 and c2 are clock readings associated with deterministic events

el(i) and em(i), respectively. Noting that the state of the GSMP at time (n+1)D given the state at

time nD is determined by (possibly empty) sequences of exponential events in the subintervals

((nD, nD+c1], (nD+c1, nD+c2] and (nD+c2, (n+1)D] and the occurrence of the deterministic

events ek and em. Thus, using the property that the GSMP is time-homogeneous and by

decomposing the time interval (0,D] into three subintervals (0,c1], (c1,c2], and (c2,D], we can

show that the GSMP behaves in each subinterval as a CTMC. Each of these three CTMCs is

given by an SMC as defined above. Subsequently, the kernel elements of the embedded

GSSMC can be computed as summations of transient state probabilities of SMCs. It is

important to note that this holds irrespective of the number of deterministic events active in

states si and sj.

The following theorem states how the transition kernel of the GSSMC can be effectively

computed and constitutes the main result of the paper.

Theorem 1 (Numerical computation of the transition kernel)

Let X t( ): t ≥ 0: ? be a finite state space GSMP with exponential and deterministic

events. Then all elements pij(.) of the transition kernel P(c1,c2,a1,a2) of the

embedded GSSMC Xn: n≥ 0; @  can be computed simply by the summation of

transient state probabilities of continuous time Markov chains.

Proof: We prove this result by construction. A complete proof of Theorem 1 requires the

consideration of nine different forms of kernel elements introduced in Eq. (7) and 24

orderings of clock readings for P33(c1,c2,a1,a2) as shown in Figure 2. Due to space limitations,

we spell out the derivation only for five selected forms, namely for the submatrices P11,

P12(a1), P13(a1,a2), P22(c1,a1), and one ordering for P33(c1,c2,a1,a2). Kernel elements of other
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forms can be derived in a similar way . Recall that X Sn n n= ≥, :C1 6< A n 0  is the GSSMC that

is embedded in a GSMP at equidistant time points nD.

We write z zem → ′ for the state transition from state z to ′z  due to the occurrence of

deterministic event em. In (12) to (18), we write z z em, ,′1 6  as shorthand index of a summation

over all feasible paths of the form z zem → ′. For ease of exposition, we assume

p z z em′ =, ,1 6 1 in the proof of Theorem 1. The extension of Eqs. (15) to (18) to an arbitrary

pmf of next state probabilities p z z E′, , *3 8 is straight-forward; i.e., requires one additional

summation. In the following, we denote by S e S Si( ) det det⊆ ∪1 2 all states in which

deterministic event ei is active. By S e e Si j( , ) det⊆ 2 , we denote all states in which both

deterministic events ei and ej are active.

Let us first derive how to compute kernel elements of the submatrix P11. Since no

deterministic event is active in state si, we need not decompose the time interval (0,D] into

subintervals. Deterministic events cannot have triggered a state transition in (0,D], though,

some deterministic events may have become active and get canceled in (0,D]. Thus,

considering the SMC of state si and using (11), we derive the kernel element as:

p P s s p Dij i
D

j s si j
=  →%&'

()* =exp*
,

~ 0 5 (12)

That is the probability for a state transition from si to sj. Eq. (12) implies that kernel elements

pij = 0  for states s SMC sj i∉ 1 6.
Now consider the derivation of kernel elements of the submatrix P12(a1). Corresponding

kernel elements are of the form pij(a1) where a1 denotes the boundary of the clock reading

interval of the deterministic event newly active; see Eq. (6). Subsequently, we decompose the

time interval (0, D] into subintervals (0, a1] and (a1, D]. Using (11), we have:

p a P S s C l j s

P s z P z s p a p D a

ij n j n n i

i a j
D az Z

s z z s
z Z

i j

1 1 1

1 1
1

1

1 6 0 5> C

J L 1 6 1 6

= = ≤ =

=  → ⋅  →%&'
()*

= ⋅ −

+ +

−∈ ∈
∑ ∑

, ( )

~ ~exp* exp*
, ,

a   S1

(13)

with the set of intermediate states Z S SMC s SRS si j= ∩ ∩det1 1 6 3 8.
Subsequently, we consider the derivation of kernel elements of the submatrix P13(a1,a2).

Recall that a1 and a2 denote upper bounds of clock readings of new deterministic event. Since

we have to consider two clock readings, two possible orderings may occur. For a1 � a2 we get:
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p a P S s C l j C m j s

P s z P z z P z s

P s z P z s

p a p a a p

ij n j n n n i

i a a a D a j
z Zz Z

i a D a j
z Z

s z z z z si

1 1 1 1

1 1 2 2

1 2 1

1 2 1 2
2 21 1

1 1
2

1 1 2 2

, , ( ) , ( )

~ ~ ~

exp* exp* exp*

exp* exp*

, , ,

a a a   S2 1 21 6 0 5 0 5> C

J L J L J L

J L J L
1 6 1 6

= = ≤ ≤ =

=  → ⋅  → ⋅  →

+  → ⋅  →

= ⋅ − ⋅

+ + +

− −∈∈

−
∈

∑∑

∑

j i j
D a p a p D a

z Zz Z
s z z s

z Z

− + ⋅ −
∈∈ ∈
∑∑ ∑2 1 1
2 21 1 2

1 6 1 6 1 6~ ~
, ,

(14)

with Z S S e SMC s SRS sl j i j1 1= ∩ ∩ ∩det ( )3 8 1 6 3 8  and Z S e e SMC s SRS sl j m j i j2 = ∩ ∩( ) ( ),3 8 1 6 3 8 .
In a similar way, for a2 � a1, we get:

p a p a p a a p D a p a p D aij s z z z z s
z Zz Z

s z z s
z Z

i j i j1 2 1 2 1 2 21 1 2 2

2 21 1 2

, ~ ~ ~ ~ ~
, , , , ,a21 6 1 6 1 6 1 6 1 6 1 6= ⋅ − ⋅ − + ⋅ −

∈∈ ∈
∑∑ ∑ (15)

with Z S e SMC s SRS sm j i j1 = ∩ ∩( )3 8 1 6 3 8 and Z2 as above.

Next, we consider the derivation of kernel elements of the submatrix P22(c1,a1). If the

deterministic event scheduled in state si at time nD, denoted by el(i), cannot be canceled, this

event occurs with probability one exactly at time nD+c1. Again, two possible orderings of

clock readings may occur. For c1 ≤ a1, using (11), we get:

p c P S s C l j s C l i

P s z P z z P z s

P s z P z s

p c p

ij n j n n i n

i c a c D a j
z Zz z e

i c D c j
z z e

s z z

l i

l i

i

1 1 1

1 1 2 2

1

1 1 1 1
21 1

1 1

1 1

, , ( ) , ( )

~ ~

exp* exp* exp*

( , , )

exp* exp*

( , , )

,

( )

( )

a a   S c1 1 11 6 0 5 0 5> C

J L J L J L

J L J L

1 6

= = ≤ = =

=  → ⋅ ′  → ⋅  →

+  → ⋅ ′  →

= ⋅

+ +

− −∈′

−
′

′

∑∑

∑

, ,
( , , )

, ,
( , , )

~ ~ ~

( ) ( )

z z s
z Zz z e

s z z s
z z e

a c p D a p c p D c
j

l i

i j

l i

2 2

21 1

1 1 1 1 1− ⋅ − + ⋅ −
∈′

′
′

∑∑ ∑1 6 1 6 1 6 1 6

(16)

with Z S S e SRS sl i j= ∩ ∩det ( )1 3 8 3 8.
For a1 < c1, we get:

p c P S s C l j s C l i

p a p c a p D c

ij n j n n i n

s z z z z s
z Zz z e

i j

l j

1 1 1

1 1 1 11 1 2 2

12 2

, , ( ) , ( )

~ ~ ~
, , ,

( , , )( )

a a   S c1 1 11 6 0 5 0 5> C
1 6 1 6 1 6

= = ≤ = =

= ⋅ − ⋅ −

+ +

′
∈′

∑∑ (17)

with Z SMC s S e ei l i l j= ∩1 6 3 8( ) ( ), . If the deterministic event el(i) may be canceled, kernel

elements of the submatrix P22(c1,a1) can be derived in a similar way.

Finally, let us consider the derivation of kernel elements of the submatrix P33(c1,c2,a1,a2) as

the most general case. Recall from Figure 2 that in general 24 orderings of clock readings c1,

c2, a1, and a2 are possible. In Eq. (18) we derive how to compute kernel elements of the form

pij(c1,c2,a1,a2) for the ordering c1 � c2 � a1 � a2 under the assumption that both deterministic

events el(i) and em(i) cannot be canceled.
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p c c

P S s C l j C m j s C l i C m i

p c p c c p a c

p a

ij

n j n n n i n n

s z z z z z
z Zz Zz z ez z e

z z

i

m il i

1 2

1 1 1

1 2 1 1 2

2

1 1 2 2 3

4 23 12 21 1

3 4

, , ,

, ( ) , ( ) , ( ) , ( )

~ ~ ~

~

, , ,
( , , )( , , )

,

( )( )

a a

a a   S c c

1 2

1 2 1 2

1 6
0 5 0 5 0 5 0 5> C

1 6 1 6 1 6

= = ≤ ≤ = = =

= ⋅ − ⋅ −

⋅ −

+ + +

′ ′
∈∈′′
∑∑∑∑

a p D a

p c p c c p a c p D a

p c p c c p a c

z s

s z z z z z
z Zz z ez z e

z s

s z z z z z
z Zz z ez

j

i

m il i

j

i

m i

1 2

1 2 1 1 2 1

1 2 1 2 2

4

1 1 2 2 3

3 12 21 1

3

1 1 2 2 3

3 12 21

1 6 1 6
1 6 1 6 1 6 1 6

1 6 1 6 1 6

⋅ −

+ ⋅ − ⋅ − ⋅ −

+ ⋅ − ⋅ −

′ ′
∈′′

′ ′
∈′

∑∑∑

∑∑

~

~ ~ ~ ~

~ ~ ~

,

, , ,
( , , )( , , )

,

, , ,
( , , )( ,

( )( )

( )′

′ ′
′′

∑

∑∑

⋅ −

+ ⋅ − ⋅ −

z e
z s

s z z z z z
z z ez z e

l i

j

i

m il i

p D a

p c p c c p D c

1

3

1 1 2 2 3

2 21 1

2

1 2 1 2

, )
,

, , ,
( , , )( , , )

( )

( )( )

~

~ ~ ~

1 6

1 6 1 6 1 6

(18)

with appropriately defined sets Z1 and Z2.

As shown in (12) to (18), kernel entries can be computed as summation of appropriately

selected transient state probabilities of CTMCs. e

3.3 Detection of Constant Kernel Elements

In this section, we state sufficient conditions on the building blocks of the GSMP under which

kernel elements are constant because jump probabilities of the GSSMC are independent of

clock readings. This is for example the case in (multiserver) queueing systems if the arrival

process is independent from the number of customers in the queue. For arbitrary GSMPs, a

necessary condition for kernel elements of the GSSMC to be constant is that clock readings of

new deterministic events at time (n+1)D do not depend on the occurrence of exponential

events in [nD, D). For GSMPs with at most two deterministic events concurrently active, this

implies pij(c1,a1) = pij(c1) and pij(c1,c2,a1,a2) = pij(c1,c2).

Recall that z z
el i( ) → ′  denotes the state transition from state z to ′z  due to the occurrence

of deterministic event el(i). Recall also that we write s si t j
exp* →  for a sequence of

exponential events from si to sj in time t. Putting it together, we write a path

si
exp* exp*( ) →  → ′  →

−c

e

D c jz z sl i

1 1
 for a sequence of exponential events in (0, c1] followed by

the occurrence of deterministic event el(i) and another sequence of exponential events in
(c1, D]. If for each such path holds ′ ∈z Sdet1, then the clock reading of the new deterministic

event does not depend on the occurrence of exponential events in [nD, (n+1)D).

We derive conditions on the structure of the GSMP, so that the jump probability

corresponding to a path si
exp* exp*( ) →  → ′  →

−c

e

D c jz z sl i

1 1
 leads to the same jump probability
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as si
exp* →

D
z with ′ =z sj . Noting that in the latter case the corresponding transient state

probability of the SMC is independent of the clock reading c1, the kernel element is constant.

Consider two states si and sj ∈ Sdet1. A prerequisite for the computation of the
corresponding kernel element according to (16) constitutes the derivation of all feasible paths

si
exp* exp*( ) →  → ′  →

−c

e

D c jz z sl i

1 1
 from the reachability graph of the GSMP. We group all

such paths into classes such that in each class, paths comprise of the same number of events,
say L. That is the deterministic event el(i) and L-1 occurrences of exponential events (L ≥ 1). If

one of the subpaths si
exp* → z or ′  →z sj

exp*  contains a cycle, we consider just one round

of this cycle. For all path of class m (m = 1,2,..,M), we define a rectangular matrix Γm:

Γ Γm

def

m

L L

L

K K K L K L

k l

s s s s

s s s

s s s s

= =

�

!

 
 
 
 

"

$

#
#
#
#

−

−

,

~ ~ ~ ~

~ ~ ~

~ ~ ~ ~

, , , ,

, , ,

, , , ,

0 5
1 0 11 1 1 1

2 0 2 1 2

0 1 1

�

� � �

�

with ~ ~
, ,s s and s sk

def

i k L

def

j0 = =
for k = 1,2,...,K

(19)

Theorem 2 states sufficient conditions on the building blocks of the GSMP under which

the proportionate jump probability, pijm, corresponding to class Γm is constant. If for some si,

sj ∈ Sdet1 the proportionate jump probabilities of all classes are constant, then the kernel

element pij(c1) is constant, too, since applying (16) p c pij ijmm11 6 = ∑ .

Theorem 2 (Conditions under which kernel elements are constant)

Let P(c1,c2,a1,a2) be the transition kernel of the embedded GSSMC Xn: n≥ 0; @
and let si and sj ∈ Sdet1 with the matrix Γ Γm m k l= ,0 5 representing all paths of

class m. Assume that the deterministic event el(i) cannot be canceled in any path of

Γm. Then, the corresponding proportionate jump probability pijm is constant, if the

following conditions hold:

(i) The rows of Γm can be ordered such that the deterministic event el(i) occurs

at position k (k = 1,2,...,K). That is each path of Γm contains the state

transition~ ~
, ,

( )s sk k
e

k k
l i

−  →1 . This condition implies that K = L in (19).

(ii)  Consider the ordering of (i) for Γm, the sets of exponential events scheduled

in ~
,sk k−1 and in ~ ,sk k  and corresponding next state probabilities are equal.

That is for k = 1,2,..,L this is:

E s E E s Ek k k k
~ ~

, exp , exp− ∩ = ∩12 7 2 7  and p s e p s ek k k k⋅ = ⋅−,~ , * , ~ , *, ,12 7 2 7
(iii)  Consider the ordering of (i) for Γm, the multi-set of exponential events

scheduled and occurring in the k-th row of Γm up to position k (and after

position k) must be a subset (or superset, respectively) of the corresponding

multi-set in the (k+1)-th row. Furthermore, corresponding next state

probabilities must be equal. Formally, for k = 1,2,..., L-1 this is:
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E s E E s E E s E E s E

and e e e e

k k k k k k

k k k k k k

~ , , ~ ~ , , ~

, , , ,

, exp , exp , exp , exp

,
*

,
*

,
*

,
*

0 1 1 0 1

0 2 1 0 1 1

2 7 2 7> C 2 7 2 7> C

> C > C

∩ ∩ ⊂ ∩ ∩

⊂

− + +

− + + −

� �

� �

E s E E s E E s E E s E

and e e e e

k k k L k k k L

k k k L k k k L

~ , , ~ ~ , , ~

, , , ,

, exp , exp , exp , exp

,
*

,
*

,
*

,
*

2 7 2 7> C 2 7 2 7> C

> C > C

∩ ∩ ⊃ ∩ ∩

⊃

+ + +

+ + +

� �

� �

1 1 1

1 1 1

Note that condition (ii) implies that for each path of Γm the states ~ ,sk k−1 and ~ ,sk k  can be

combined yielding one path of exponential events si
exp* →

D
js  as illustrated in Figure 3.

el(i)
si

~
,sk k

~
,sk k−1

λ1 ~
,sk 1 sj

λ2 λk−1 λk λL-1

si

λ1 ~
,sk 1 sj

λ2 λk−1 λk λL-1zk

λk

Figure 3. Combining states in SMCs leading to constant jump probabilities

Proof: We have to show that the proportionate jump probability pijm(c1) is independent of the

clock reading c1. Assuming the paths of Γm are ordered according to condition (i). Then, using

(16) the proportionate jump probability pijm is given by:

p c P s P s s p c p D cijm
c

k k
k

L

k k
D c

j s s s s
k

L

i k k k k j1 1
1

1 1
11 1

1
1 6 =  →%&'

()*
⋅  →%&'

()*
= ⋅ −−

= − =
∑ ∑ −

si
exp*

, ,
exp*

,~ ~ ,
~ ~ ~ ( ) ~ ( )

, ,
(20)

Because of condition (ii), the same set of exponential events is scheduled in states ~
,sk k−1 and

~
,sk k and corresponding next state probabilities are equal for k = 1,2,...,L. Thus, we can

combine the two states to one state zk  as illustrated in Figure 3. Subsequently, we can rewrite

(20) as:

p c p c p D cijm s z z s
k

L

i k k j1 1 1
1

1 6 = ⋅ −
=

∑~ ( ) ~ ( ), , (21)

Recall that according to condition (iii), each path contains the same (multi)-set of L-1

scheduled and occurring exponential events and corresponding next state probabilities are

equal. Note that Eq. (21) can be interpreted as the convolution of two exponential phase-type

random variables given by the exponential events occurring in (0, c1] and in (c1, D]. Since

according to (i) in Γm the deterministic event el(i) occurs exactly once at position k, the

summation in Eq. (21) is taken over all possible cases. Thus, the jump probability pijm is given

by the probability that the considered L-1 exponential events occur in (0,D]. This immediately

leads to p c p p Dijm ijm s si L L1 1
1 6 = =

−
~ ( ),~ ,

. e
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As already mentioned, kernel elements of the form pij(c1,c2,a1,a2) = pij(c1,c2) may also be
constant. In fact, assuming c1 ≤ c2 kernel elements pij(c1,c2,a1,a2) are constant, if the
summation according to (18) of all paths of the form

si
exp* exp* exp*( ) ( ) →  → ′  →  → ′  →

− −c

e

c c

e

D c jz z z z sl i m i

1 2 1 2
1 1 2 2  leads to the same jump probability

as si
exp* →

D
z1 with ′ =z z1 2 and ′ =z sj2 . As above, we group all feasible paths of this form

into classes of equal length and define for each class a rectangular matrix according to (19).
Due to space limitations, we just state informally conditions ensuring that a proportionate
jump probability pijm is independent of the clock readings c1 and c2. Assume that the
deterministic events el(i) and em(i) cannot be canceled in any path of Γm. Subsequently, the
proportionate jump probability of class m, pijm, is constant, if the following conditions hold:

(iv) The rows of Γm can be ordered such that the deterministic events el(i) and em(i)

occur at positions k and l with k = 1,2,...,L-1 and l = k+1,...,L. This condition

implies that K L L= −1
2 10 5 in (19).

(v) The (multi)-set of L-2 exponential events which occur is equal in each path of Γm.

(vi) The sets of exponential events scheduled in states ~
,sk l  in which a deterministic

events occurs and the next state ~
,′sk l  are the same and corresponding next state

probabilities are equal.

3.4 Detection of Symmetric State Probabilities

When in the GSSMC Xn clock readings of two concurrent deterministic events el(j) and em(j)

are always set in an equal way, the time-dependent and stationary probabilities π j
n a a( ) ,1 21 6

and π j a a1 2,1 6  are symmetric functions with respect to a1 and a2. This implies that for sj ∈
Sdet2 with E s E e ej l j m j3 8 = B∩ =det ( ) ( ),  for each feasible path of the form

si
exp* exp* →  →z sj1  with E z E el j11 6 = B∩ =det ( )  exits a corresponding path

si
exp* exp*

� →  →z sj1  with E z E em j� det ( )11 6 = B∩ =  such that π πj ja a a a1 2 2 1, ,1 6 1 6= . Similar

conditions can be derived for other forms of feasible paths to state sj ∈ Sdet2. Recall that we

write si
exp* → sj  For a possibly empty sequence of exponential events from si to sj, For a

state transition from si to sj due to the occurrence of exactly one exponential event, we write

si
exp → sj. In the most general setting, these conditions are met when the reachability graph

of the GSMP is isomorphic to the reachability graph of a GSMP in which all arcs labeled with

el(j) are replaced by arcs labeled em(j) and vice-versa. However, in general checking graph

isomorphism may require even for weighted directed graphs (i.e., reachability graphs of

GSMPs) a high computational effort. Theorem 3 states sufficient condition on the building

blocks of the GSMP that just depend on state transitions to/from immediate neighbor states in
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Theorem 3 (Conditions under which state probabilities are symmetric)

Let X t( ): t ≥ 0: ? be a finite state space GSMP with exponential and deterministic

events. Consider a state sj ∈ Sdet2 in which the both deterministic events el(i) and

em(i) are concurrently active. Let z1, z2 ∈ Sdet1 with E z E el i11 6 = B∩ =det ( )  and

E z E em i21 6 = B∩ =det ( ) . Then, π πj ja a a a1 2 2 1, ,1 6 1 6= , if the following conditions

are met:

(i) For each si ∈ Sexp with transition si
exp → z1, exists a transition

si
exp → z2 which comprises of the same exponential event e* and equal

next state probability p s ei⋅, , *1 6 .
(ii)  For z1, z2 ∈ Sdet1 as defined above with transition z1

exp → sj , exists a

transition z2
exp → sj  which comprises of the same exponential event e*

and equal next state probabilities; p z e p z e⋅ = ⋅, , * , , *1 21 6 1 6. Furthermore, for

each transition z z
el j

1
( ) → ′  exists a corresponding transition z z

em j
2

( ) → ′
with ′z ∈ Sdet1.

(iii) For each si ∈ Sdet2 with E s E e ei l j m j1 6 = B∩ =det ( ) ( ),  and transitions

si
el j z( ) → ′1 and si

em j z( ) → ′2 holds either E z e E z em j l j′ − = ′ −1 21 6 = B 1 6 = B( ) ( )

with ′ ′z z1 2,  ∈ Sdet1 or ′ = ′z z1 2 with ′ ′z z1 2,  ∈ Sdet2. That former condition says

that the exponential events scheduled in the new state reached by the

occurrence of one of the deterministic events and corresponding next state

probabilities are the same.

the reachability graph. Thus, these conditions can be checked easily. Note, these conditions

apply to all multiserver queueing systems (e.g., MAP/D/2/K). However, there exists GSMPs

of the considered class in which state probabilities are symmetric, even if the conditions of

Theorem 3 are not met. Due to space limitations, we omit the proof of this theorem.

4 Impact of Theorems for the Efficient Numerical Analysis

4.1 The System of Integral Equations

In order to illustrate the impact of results presented in the previous section, we recall the

systems of time-dependent and stationary equations of the GSSMC as introduced in [9], [10].

To write these systems of Fredholm integral equations in vector notation, we define three

vectors of state probabilities for the states of Sexp, Sdet1, and, Sdet2 respectively.

π π π πexp
( ) ( ) ( ) ( ), , ,n n n

N
n= 1 2 1

�3 8
π π π πdet

( ) ( ) ( ) ( )( ) ( ), ( ), , ( )1 1 1 1 2 1 11 1 1 2

n
N
n

N
n

N N
na a a a= + + +�3 8 (22)

π π π πdet
( ) ( ) ( ) ( )( , ) ( , ), ( , ), , ( , )2 1 2 1 1 2 2 1 2 1 21 2 1 2

n
N N
n

N N
n

N
na a a a a a a a= + + + + �3 8
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To further simplify the notation in the systems of integral equation (17) to (19), we

introduce two vectors y(n)(c1) and z(n)(c1,c2) for the derivatives of state probabilities as:

y c
d c

dc
n def

n
( ) det

( )

( )
( )

1
1 1

1
= π

    and   z c c
c c

c c
n def

n
( ) det

( )

( , )
( , )

1 2

2
2 1 2

1 2

= ∂
∂ ∂

π
(23)

As shown in [9], the GSSMC allows the numerical analysis of GSMPs with different values

Dm for clock settings of deterministic events. However, for ease of exposition, we recall just

the systems of time-dependent and stationary equations of the GSSMC under the restriction

that all deterministic events have the same delay D and that concurrent deterministic events

cannot be canceled. Then, using the submatrices Pij (.) of the transition kernel defined in (7)

together with (22) and (23), time-dependent state probabilities for the GSMP at instants of

time nD are given by [10]:

π πexp
( )

exp
( ) ( ) ( ) ( )( ) ( ) ( , ) ( , ) ( , ) ( , )n n n

D
n n

cD

y c c dc z c c c c z c c c c dc dc+ = ⋅ + ⋅ + ⋅ + ⋅I II1
11 1 21 1

0
1 2 31 1 2 2 1 31 2 1 1

0
2

0

2

P P P P  (24)

π πdet
( )

exp
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( , ) ( ) ( , )

( , ) ( , , ) ( , ) ( , , )

( , ) ( , , ) ( , ) ( ,

1
1

1 12 1 1 22 1 1
0

1 22 1 1 1

1 2 32 1 2 1 2 1 32 2 1 1 1
0

2
0

1 2 32 1 2 1 2 1 32 2

1

1

21

n n n
a

n

a

D

n n
ca

n n

a a y c c a dc y c c a dc

z c c c c a z c c c c a dc dc

z c c c c a z c c c

+ = ⋅ + ⋅ + ⋅

+ ⋅ + ⋅

+ ⋅ + ⋅

I I

II

P P P

P P

P P c a dc dc
a

a

D

1 1 1
0

2

1

1

, )II

(25)

π πdet
( )

exp
( ) ( ) ( )

( ) ( )

( )

( , ) ( , ) ( ) ( , , ) ( ) ( , , )

( , ) ( , , , ) ( , ) ( , , , )

( , ) ( ,

2
1

1 2 13 1 2 23 1 1 2 1
0

1 23 1 1 2 1

1 2 33 1 2 1 2 2 1 33 2 1 1 2 1
0

2
0

1 2 33 1

1

1

2

21

n n n
a

n

a

a

n n
ca

n

a a a a y c c a a dc y c c a a dc

z c c c c a a z c c c c a a dc dc

z c c c

+ = ⋅ + ⋅ + ⋅

+ ⋅ + ⋅

+ ⋅

I I

II

P P P

P P

P

            

            c a a z c c c c a a dc dcn
a

a

a

2 1 2 2 1 33 2 1 1 2 1
0

2

1

1

2

, , ) ( , ) ( , , , )( )+ ⋅II P

(26)

for a a1 2≤

π πdet
( )

exp
( ) ( ) ( )

( ) ( )

( )

( , ) ( , ) ( ) ( , , ) ( ) ( , , )

( , ) ( , , , ) ( , ) ( , , , )

( , ) (

2
1

1 2 13 1 2 1 23 1 1 2 1
0

1 23 1 1 2 1

1 2 33 1 2 1 2 2 1 33 2 1 1 2 1
0

2
0

1 2 33 1

2

2

1

22

n n n
a

n

a

a

n n
ca

n

a a a a y c c a a dc y c c a a dc

z c c c c a a z c c c c a a dc dc

z c c c

+ = ⋅ + ⋅ + ⋅

+ ⋅ + ⋅

+ ⋅

I I

II

P P P

P P

P

            

            , , , ) ( , ) ( , , , )( )c a a z c c c c a a dc dcn
a

a

a

2 1 2 2 1 33 2 1 1 2 1
0

2

2

2

1

+ ⋅II P

(27)
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for a a2 1≤

where 0 ≤ a1,a2 ≤ D and π π πdet det det( ) ( , ) ( , )1 2 2 2 10 0 0 0= = =c c .

Taking the limits n→ ∞  in (24) to (27) and using some algebra, we derive a system of

Fredholm integral equations in:

0 11 1 21 1 1
0

1 2 31 1 2 2 1 31 2 1 1
0

2
0

2

= ⋅ − + ⋅ + ⋅ + ⋅I IIπexp ( ) ( ) ( , ) ( , ) ( , ) ( , )P I P P P1 6 y c c dc z c c c c z c c c c dc dc
D cD

 (28)

0 12 1 1 22 1 1 1
0

1 22 1 1 1

1 2 32 1 2 1 2 1 32 2 1 1 1
0

2
0

1 2 32 1 2 1 2 1 32 2 1 1 1
0

2

1

1

21

1

1

= ⋅ + ⋅ − + ⋅

+ ⋅ + ⋅

+ ⋅ + ⋅

I I

II

II

πexp ( ) ( ) ( , ) ( ) ( , )

( , ) ( , , ) ( , ) ( , , )

( , ) ( , , ) ( , ) ( , , )

P P I P

P P

P P

a y c c a dc y c c a dc

z c c c c a z c c c c a dc dc

z c c c c a z c c c c a dc dc

a

a

D

ca

a

a

D

1 6

          

          

(29)

0 13 1 2 23 1 1 2
0

23 1 1 2

1 2 33 1 2 1 2 2 1 33 2 1 1 2 1
0

2
0

1 2 33 1 2 1 2 2 1 33 2

1

1

2

21

= ⋅ + ⋅ + ⋅

+ ⋅ − + ⋅ −

+ ⋅ − + ⋅

I I

II

πexp ( , ) ( ) ( , , ) ( ) ( , , )

( , ) ( , , , ) ( , ) ( , , , )

( , ) ( , , , ) ( , ) ( ,

P P P

P I P I

P I P

a a y c c a a dc y c c a a dc

z c c c c a a z c c c c a a dc dc

z c c c c a a z c c c c

a

a

a

ca

          

          

1 6 1 6

1 6 1 1 2 1
0

2

1

1

2

, , )a a dc dc
a

a

a

II

(30)

for a a1 2≤

0 13 1 2 23 1 2

0

23 1 2

1 2 33 1 2 1 2 2 1 33 2 1 1 2 1

0

2

0

1 2 33 1 2 1 2 2 1 33 2 1 1

2

2

1

22

= ⋅ + ⋅ + ⋅

+ ⋅ − + ⋅ −

+ ⋅ + ⋅

I I

II

πexp ( , ) ( ) ( , , ) ( ) ( , , )

( , ) ( , , , ) ( , ) ( , , , )

( , ) ( , , , ) ( , ) ( , , ,

P P P

P I P I

P P

a a y c c a a dc y c c a a dc

z c c c c a a z c c c c a a dc dc

z c c c c a a z c c c c a a

a

a

a

ca

          

          

1 6 1 6

2 1

0

2

2

2

1

)−II I1 6dc dc
a

a

a

(31)

for a a2 1≤
where 0 ≤ a1,a2 ≤ D and π π πdet det det( ) ( , ) ( , )1 2 2 2 10 0 0 0= = =c c . Having solved (28) to (31)

for πexp, y(n)(c1) and z(n)(c1,c2), the stationary or time-averaged state probabilities

π πi iD and D D0 5 0 5, ,  of the GSSMC are derived by numerical integration.

Applying Theorem 3, we can detect when state probabilities are symmetric with respect to

clocks of concurrent deterministic events. This leads to π πi ia a a a1 2 2 1, ,1 6 1 6=  for

0 < a1,a2 ≤ D. As a consequence, Eqs. (27) and (31) of the systems of integral equations (24)

to (27) and (28) to (31) can be omitted in the numerical analysis of the corresponding GSMP.
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4.2 Easy Numerical Computation of the Transition Kernel

The result that all elements of the transition kernel of the GSSMC can be expressed by

summation of transient state probabilities of CTMCs (Theorem 1) reduces the computation of

jump probabilities of a stochastic process with continuous state space, i.e., a GSSMC to

transient analysis of a number of simple stochastic processes, i.e., the SMCs. An efficient

numerical method for transient analysis of CTMCs is the randomization technique [7]. Note

that the computation of the transient state probability vector πi(D) of SMC si1 6  by

randomization also yields transient state probability vectors πi(t) for 0 < t < D as intermediate

results. As a consequence, the numerical computation of the transition kernel of the GSSMC

requires asymptotically the same effort as the numerical computation of the probability matrix

P of the discrete-time Markov chain embedded in the Markov regenerative process underlying

discrete-event systems without concurrent deterministic events [1], [3], [8].

To illustrate the concept of SMCs, we consider a finite-capacity multiserver queueing

systems. The system comprises of two identical servers with constant service time D and one

queue with limited capacity K. Customers arrive according to Poisson distributions (λ1, λ2,

.., λN) whose parameter is controlled by an N-state CTMC with birth-death structure, i.e, a

Markov modulated Poisson process. When an arriving customer finds an empty system, it

enters server 1 with probability p and server 2 with (1-p). This queueing system is known as

the MMPP/D/2/K queue. The state of the corresponding GSMP is determined by the number

of customers in the system and by the state of the arrival process. When just a single customer

resides in the system, we distinguish whether this customer is served at server 1 or server 2.

The number of states of the GSSMC underlying the MMPP/D/2/K is given by N K( )+ 2 . In N

states are only exponential events active whereas in 2N states exactly one deterministic event

is active. The number of states in which two deterministic events are concurrently active is

given by N K( )−1 . Assuming N = 2, Figure 4 shows the reachability graph of the GSMP

2

6
pλ1 λ1

0

(1-p)λ1 3
λ1

8

e1

λ1 λ1 λ1

e2 e2

e2 e1
e1

2K+2

4

7
pλ2 λ2

1

(1-p)λ2 5
λ2

9

e1

λ2 λ2

e2 e2

e2 e1
e1

2K+3

α β α β α βα β

α

α

β

β

λ2

Figure 4. Reachability graph of the GSMP underlying the MMPP/D/2/K queue
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6 8 10λ1 λ1 λ1 λ1 2K+2

7 9 11λ2 λ2 λ2 λ2 2K+3

α β α β α β α β

Figure 5. Subordinated Markov chain of states 6 and 7 of the MMPP/D/2/K queue

underlying the MMPP/D/2/K queue. The deterministic service is represented by arcs labeled

with events e1 and e2. State changes due to exponential events are labeled with their rate

parameters α, β, λ1, and λ2. Figure 5 shows the SMCs of states 6 and 7. Applying Theorem 3,

we detect that for p = 1
2 holds π πi ia a a a1 2 2 1, ,1 6 1 6=  for all states si ∈ Sdet2.

4.3 Exploitation of Constant Kernel Elements

The detection of constant kernel elements (Theorem 2) implies that corresponding integral

expressions in the systems of Fredholm equations (24) to (27) and (28) to (31) vanish. Table 1

shows the number of nonzero entries of the transition kernel of the GSSMC underlying the

MMPP/D/2/K queue for increasing model size; i.e., K = 1000 to 10000 and provides

percentages for each of the five different types of kernel elements. Note that this table shows

the number of kernel elements whose analytic expressions are nonzero. The employment of

dynamic sparsing of kernel elements in the practical computational scheme leads to a

substantial reduction of nonzero elements and, thus, of memory requirements. From Table 1

we observed that for this class of GSMP, i.e., GSMPs corresponding to multiserver queueing

States of
GSSMC

Nonzero
entries

Constant
entries

Functionals in
1 variable

Functionals in
2 variables

Functionals in
3 variables

Functionals in
4 variables

  2004     2004997 99,30 % 0,20 % 0,49 % 2,5 10-4 % 1,0 10-4 %

  4008     8009997 99,65 % 0,10 % 0,25 % 6,3 10-5 % 2,5 10-5 %

  6012   18014997 99,77 % 0,07 % 0,17 % 2,8 10-5 % 1,1 10-5 %

  8016   32019997 99,83 % 0,05 % 0,12 % 1,6 10-5 % 6,3 10-6 %

10020   50024997 99,86 % 0,04 % 0,10 % 1,0 10-5 % 4,0 10-6 %

12024   72029997 99,88 % 0,03 % 0,08 % 6,9 10-6 % 2,8 10-6 %

14028   98034997 99,90 % 0,03 % 0,07 % 5,1 10-6 % 2,0 10-6 %

16032 128039997 99,91 % 0,02 % 0,06 % 3,9 10-6 % 1,7 10-6 %

18036 162044997 99,92 % 0,02 % 0,06 % 3,1 10-6 % 1,2 10-6 %

20040 200049997 99,93 % 0,02 % 0,05 % 2,5 10-6 % 1,0 10-6 %

Table 1. Classification of elements of the transition kernel of MMPP/D/2/K
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systems, more than 99% of nonzero kernel elements are constant. As shown in [10], for quite

complex GSMPs (i.e., MMPP/D/2/K queue with K = 10,000 for mission time T = 100) the

solution of the system of time-dependent equations requires on a modern workstation about

26 minutes of CPU time, the solution of the corresponding system of stationary equations

requires less than 5 minutes of CPU time. Thus, for GSMPs underlying finite-capacity

multiserver queueing systems with deterministic service, the exploitation of constant kernel

elements in the system of integral equations is key for their highly efficient transient and

steady-state analysis.

Conclusions

This paper presented methodological results that provide the foundation for the cost-effective

algorithmic generation of the transition kernel of the general state space Markov chain

(GSSMC) underlying a GSMP with exponential and deterministic events. Key contributions

constitute the formal proof that kernel elements can always be computed by appropriate

summation of transient state probabilities of continuous-time Markov chains (Theorem 1).

Thus, the computation of the transition kernel of the GSSMC requires asymptotically the

same effort as the computation of the probability matrix of the discrete-time Markov chain

embedded in the Markov regenerative process underlying discrete-event system without

concurrent deterministic events. Furthermore, we derived conditions on the building blocks of

the GSMP under which kernel elements are constant; i.e., are independent of clock readings

(Theorem 2). We also derive conditions on the building blocks of GSMPs for which state

probabilities π i a a1 2,1 6 are symmetric with respect to clock readings of deterministic events

concurrently active (Theorem 3).

We would like to point out that these properties are valid for GSSMCs with arbitrarily

many (i.e., also more than two) deterministic events concurrently active. The exploitation of

these properties of the GSSMC considerably reduces the computing time and memory

requirements for the numerical solution of the systems of Fredholm integral equations which

constitute the systems of time-dependent and stationary equations of the considered class of

GSMPs [9], [10]. As a consequence, the implementation of an algorithmic kernel generation

based on the presented results together with the already implemented solvers introduced in

[9], [10] allow the numerical analysis of complex discrete-event stochastic systems with

concurrent deterministic events.
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