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Abstract

This paper describes the latest version of the software package DSPNexpress, a
tool for modeling with deterministic and stochastic Petri nets (DSPNs). Novel
innovative features of DSPNexpress 2000 constitute efficient numerical methods
for transient and steady-state analysis of DSPNs with concurrent deterministic
transitions. In particular, DSPNexpress 2000 can perform transient analysis of
DSPNs without concurrent deterministic transitions in three orders of magnitude
less computational effort than the previously known method. To outreach from
stochastic Petri net modeling to system specification languages used in industrial
projects, DSPNexpress 2000 contains filters to the commercial design packages
StateMate™ and Together™. Due to an open interface, the solvers of
DSPNexpress can be utilized for analysis of discrete-event stochastic systems
with exponential and deterministic events specified in arbitrary modeling
formalisms.
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1 Introduction

To effectively employ model-based evaluation of computer and communication systems,
software environments are needed that simplify model specification, modification, as well as
automate quantitative analysis. Due to the complexity of practical modeling applications
requiring sophisticated solution methods, the development of effective software tool support
for stochastic Petri nets is an active research area. Software packages for stochastic Petri nets
include GreatSPN [4], Mobius [18], QPN-tool [3], SPNP [6], and UltraSAN [17].

This paper describes the latest version of one such software package, the DSPNexpress
2000 modeling environment. The previous version of DSPNexpress, DSPNexpressl1.5 is
known for its highly efficient numerical method for steady-state analysis of deterministic and
stochastic Petri nets (DSPNSs, [1]) without concurrent deterministic transitions [11], [13]. This
numerical method analyzes DSPNs with four orders of magnitude less computational effort
that the previously known method implemented in the version 1.4 of the package GreatSPN.

Novel innovative features of DSPNexpress 2000 constitute efficient numerical methods for
transient and steady-state analysis of DSPNs with concurrent deterministic transitions. In
previous work, transient analysis of DSPNs was always based on the restriction that
deterministic transitions are not concurrently enabled. Choi, Kulkarni, and Trivedi observed
that the marking process underlying a DSPN with this restriction is a Markov regenerative
stochastic process [5]. They introduced a numerical method for transient analysis of such
DSPNs based on numerical inversion of Laplace-Stieltjes transforms. More recently, German
et al. developed a numerical method for transient analysis of DSPNs based on the approach of
supplementary variables [10]. Using the same approach, Telek and Horvath developed state
equations for transient analysis of Markov regenerative stochastic Petri nets in which timed
transitions keep their remaining firing times in case their firing process gets preempted for
subsequent resumption instead of discarding them and restarting the firing process [19].
While these methods are certainly of theoretical interest, they are both not suitable for
application in practical performance and dependability modeling projects. Numerical
inversion of Laplace-Stieltjes transforms can only be employed for the analysis of simple
models (i.e., DSPNs with a few tangible markings). The practical applicability of the
supplementary variables approach is severely limited because it requires, already in the
restricted case of no concurrent deterministic transitions, numerical solution of partial
differential equations.

In previous work, we introduced an effective numerical method for transient and steady-
state analysis of deterministic and stochastic Petri nets (DSPNs) with concurrent deterministic
transitions [14], [15], [16]. This approach is based on the analysis of a general state space
Markov chain (GSSMC) whose Chapman-Kolmogorov equations constitute a system of
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multidimensional Fredholm integral equations. The transition kernel of the GSSMC specifies
one-step jump probabilities from a given state at instant of time nD to all reachable new states
at instant of time (n+1)D. In general, a transition kernel is a functional matrix. Key
contributions of the GSSMC approach constituted the observations that most of the elements
of the transition kernel of the GSSMC are constants (99% for DSPNs corresponding to
gueueing systems as shown in Section 4) and that the remaining elements comprise of piece-
wise continuous functions. Such functional kernel elements are always separable. That is,
elements depending on several clock readings can be expressed as the sum and/or product of
constants, and functions depending on just one functional expression. It is known that a
system of Fredholm integral equations with separable kernel is of a particularly simple form
[8]. Therefore, its numerical solution requires orders of magnitude less computational cost
than numerical solution of partial differential equations. As shown in Section 4, transient
analysis of quite complex DSPNs (i.e., with 20 thousand tangible markings for mission time
T = 100) requires about 26 minutes of CPU time [15], steady-state analysis less than 5
minutes of CPU time. Furthermore, we showed in [15] that DSPNexpress 2000 performs
transient analysis of DSPNs without concurrent deterministic transitions in a few minutes of
CPU time (i.e., three orders of magnitude less computational effort than the previously known
method [10]).

To outreach from stochastic Petri net modeling to system specification languages used in
industrial projects, DSPNexpress 2000 contains filters to the widely known commercial
design packages StateMate™ and Together™. Thus, the numerical solvers of DSPNexpress
can also be utilized for quantitative evaluation of system specifications with Harel state charts
[9] as well as state charts and activity diagrams of the Unified Modeling Language (UML
[7]). Due to an open interface, the solvers of DSPNexpress can be utilized for analysis of
discrete-event stochastic systems with exponential and deterministic events specified in
arbitrary modeling formalisms.

The remainder of this paper is organized as follows. Novel innovative features of the
DSPNexpress 2000 are described in Section 2. In Section 3, we recall the GSSMC approach
discuss the software architecture of the numerical solvers, and give a brief glance at the
graphical user interface of the package. To illustrate the practical applicability of
DSPNexpress 2000 in complex performance and dependability modeling projects, Section 4
presents curves plotting the CPU time and memory requirements of two DSPNs versus model
size. These curves illustrate that DSPNexpress 2000 can effectively be employed for the
transient and stationary analysis of DSPNs with large state space and two deterministic
transitions concurrently active. Finally, concluding remarks are given.



2 Innovative Features of DSPNexpress 2000

The previous version of DSPNexpress, DSPNexpressl1.5, is known for its highly efficient
numerical method for steady-state analysis of deterministic and stochastic Petri nets (DSPNs,
[1]) without concurrent deterministic transitions [11], [13]. Furthermore, DSPNexpressl.5
contained already a graphical user interface running under X11 allowing easy model
specification, modification, graphical animation, as well as automate quantitative analysis.
Novel innovative features of the DSPNexpress 2000 include:

(1) An implementation of an efficient numerical method for transient analysis of DSPNs
without concurrent deterministic transitions based on an iterative numerical solution of
one-dimensional Fredholm integral equations [15].

(2) An implementation of an effective numerical method for transient and steady-state
analysis of DSPNs with two deterministic transitions concurrently enabled [14], [15].
These tasks require numerical solution of two-dimensional Fredholm equations by an
iterative scheme and direct quadrature, respectively.

(3) Orthogonal software architecture especially tailored to numerical analysis of the
stochastic process underlying a discrete-event stochastic system with exponential and
deterministic events (i.e., a Markov regenerative process [5] or a generalized semi-
Markov process [14]) based on interprocess communication with UNIX sockets rather
than writing intermediate results in files.

(4) Filters to the commercial design packages StateMate™ and Together™ so that the
numerical solvers of DSPNexpress can also be utilized for quantitative evaluation of
system specifications with Harel state charts [9] as well as state charts and activity
diagrams of the Unified Modeling Language (UML [7]).

(5) Open interface of the numerical solvers so that they can easily be utilized for the
quantitative evaluation of arbitrary discrete-event stochastic systems with exponential
and deterministic events specified in other modeling formalisms than just DSPNs (e.g.,
hardware systems represented as finite state machines).

3 DSPNexpress Software Architecture

3.1 Methodological Results

Methodological results published in [14],[15],[16] introduced an approach for the cost-
effective numerical analysis of DSPNs with concurrent deterministic transitions. The
approach is based on representing the marking process of the DSPN as a finite-state
generalized semi-Markov process (GSMP) with exponential and deterministic events.
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Subsequently, transient and steady-state analysis of this GSMP is performed by considering a
general state space Markov chain (GSSMC) embedded at equidistant time points nD
(n=1,2,...) of the GSMP. We showed that both the continuous-time GSMP representing the
marking process of the DSPN and the discrete-time GSSMC have the same limiting
distributions provided that such limits exist [14]. Otherwise, these two processes have the
same time-averaged distribution. The GSSMC is completely specified by a transition kernel
and an initial distribution at time t = 0.

The algorithmic generation of the simplest form of the transition kernel of this GSSMC
given the building blocks of the GSMP is discussed in a recent paper [16]. The transition
kernel of the GSSMC specifies one-step jump probabilities from a given state at instant of
time nD to all reachable new states at instant of time (n+1)D. In general, entries of the
transition kernel of a GSSMC are functions of clock readings associated with the current state
(i.e., functions in gand g) and functions for clock readings associated with the new state
(i.e., functions in aand @). In general, the transition kernel of the GSSMC, denoted by
P(c1,c,a,&), has the form:

1
Pi1 PlZ(al) Plsfal aﬁ :
N4
CUONg+1
P(C1,Cp, 8y, &)= Py1(cy) PyjCyay Po§cqa; a) :
Ni+Nj,
N;+N,+1
P31(C1, C) PsfcyCra) | Pshcycpay ap :
N
1 Ny INj+1 Ny+N,IN+#N,+1 N

Here, N and N denote the number of tangible markings of the DSPN enabling only
exponential transitions and the number of tangible markings in which exactly one
deterministic transition is enabled. The total number of tangible markings of the DSPN is
denoted by N. Thus, the number of tangible markings in which two deterministic transitions
are concurrently enabled is given Ry- N; —N».

In [16] we present four theorems that provide the foundation for an algorithmic generation
of the transition kernel. First, we formally proof that kernel elemefitg pan always be
computed by appropriate summation of transient state probabilities of continuous-time
Markov chains. Second, we derive a set of conditions on the building blocks of the GSMP
(and, hence structural properties of the DSPN) under which kernel elements are constant; i.e.,
p;j() = k;j for 0 < g,c,,&,& < D where k is a positive real number. Third, we proof that
functional kernel elements are always separable. That is, functional kernel elements
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depending on several clock readings can be expressed as the sum and/or product of constants,
functions depending on just a single new clock reading and functions taking into account just

a single old clock reading. Fourth, we derive conditions on the building blocks of the GSMP
(and, hence structural properties of the DSPN) for which state probabitities a,) are
symmetric in respect to clock values of deterministic events concurrently active. That is

T (&, &) =T (&, g) for 0 < 3,8 < D. The exploitation of the properties of the transition
kernel substantially reduces the computing time and memory requirements for the numerical
solution of the system of Fredholm integral equations.

The form of the multidimensional Fredholm integral equations that constitute the time-
dependent and stationary equations of the GSSMC have been presented in [14] and [15]. To
write the system of time-dependent equations for the GSSMC in vector notation, we define
three vectors of transient state probabilities at time nD, n = 1,2,..., respectively.

) = (", Y, )
T (@) = (T, 1(a), T, (@), T, () (1)
T, (8, 8) = (T a( @ ) T o @ D) T (@ 8)

Furthermore, we introduce functioné“)g( 1) and i”)( ¢, 6) as short hand notation for
derivatives of transient state probabilities at time nD. That is:

0T (C1, Cp)
dc,0c,

y"(c,) = and 2" (c;, ¢,) = )

dT[ggﬂ(cl)

do
As shown in [13], [14] the GSSMC approach allows the numerical analysis of DSPNs with
concurrent deterministic transitions with different delays. However, for ease of exposition we
present only the restricted case that all deterministic transitions of the DSPN have the same
firing delay D. The extension of the time-dependent equations for DSPNs with deterministic
transitions having different delays can be performed exactly as for the system of stationary
equations introduced in [13]. Then, using the submatRge} of the transition kernel, time-
dependent state probabilities for the GSSMC underlying a DSPN with two deterministic
transitions concurrently enabled can be derived by the (discrete-time) forward Chapman-
Kolmogorov equations. Thus, with (1) and (2) for n =0,1,2,... we have:
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The system of equations (3) to (6) constitutes a system of two-dimensional Fredholm
integral equations of the second type already written in an iterative scheme for its numerical
solution. This iterative scheme is calledtard iteration Due to the decomposition in disjoint
subregions, all elements Bfc,,c,,a,8) are piece-wise continuous. Thus, the iterative scheme
(3) to (6) converges to the stationary or time-averaged solution when n goes to infinity.
Moreover, by taking the limits n. o in (3) to (6), we derive the system of stationary
equations for the GSSMC underlying a DSPN with two deterministic transitions concurrently
enabled. For steady-state analysis, as described in [13], [14] the system of Fredholm integro-
differential equations (3) to (6) can be converted to system of a pure Fredholm integral for
which efficient numerical solution techniques based on direct quadrature and subsequent
solution of one large but very sparse linear system are known [8].

Note that if the transition kernd¥(c,,c,,a,&) is symmetric with respect to clocks of
concurrent deterministic events, we hamga;, &)=Ti(&, ) for 0 < 3,8 < D. As a
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consequence, Equation (6) need not be evaluated and two-dimensional integrals can be
simplified in (3) to (5). That is e.g.,

0o

[ [27(cp ) Pas(cy cpa &)+ £( 6 QPaf 6 g @ @ deslc
00
:2.[.[2(”)(01’ Cy) (P33(Cy, Cx 3, &) dg de

0o

3.2 Organization of the Numerical Solvers

The core of the package DSPNexpress constitutes the solution engine for discrete-event
stochastic systems with exponential and deterministic events. The software architecture of this
solution engine and its software modules are shown in Figure 1. The solution engine is drawn

as the big white rectangular box. The six software modules are drawn as rectangles. These
software modules are invoked from the solution engine as UNIX processes. Interprocess

communication with sockets drawn as broken ellipses is employed for passing intermediate

results from one module to the next.

Steady-state analysis of DSPNs without concurrent deterministic transitions relies on
analysis of an embedded Markov chain (EMC) underlying such DSPNs [1]. To efficiently
derive the probability matrix of this EMC, the concept of a subordinated Markov chain
(SMC) was introduced. Recall that a SMC associated with a stiata €TMC whose states
are given by the transitive closure of all states reachable frowa she occurrence of
exponential events [13]. After generating the reachability graph comprising of tangible
markings (states) of the DSPN, for each state the generator matrix of its SMC is derived.
These tasks are performed in the modidesive Tangible Reachability Grapéind Derive
Subordinated Markov Chaingespectively. Entries of this probability matrix are computed by
transient analysis of the SMCs. A multithreaded execution can be employed for the
computation of the entries of the probability matrix of the EMC using the sockets
PMATRIX<1> to PMATRIX<K>. Similarly, the conversion factors required by the EMC
approach are passed through the sockets CMATRIX<1> to CMATRIX<K>. Subsequently, a
linear system corresponding to the stationary equations of the EMC is solved and the state
probabilities of the continuous-time marking process of the DSPN are derived using the
conversion factors. These task are performed in the submoDelegee EMC and Solve
Linear SystemThese software modules constituted the core of version 1.5 of DSPNexpress.

DSPNexpress 2000 contains two new software moddesive GSSMCand Solve
Fredholm equationsAs mentioned above, transient analysis of DSPNs is based on the
analysis of an embedded GSSMC. The Chapman Kolmogorov equations of the GSSMC
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Figure 1. The software architecture of the numerical solvers of DSPNexpress 2000

constitute a system of Fredholm integral equations introduced in (3) to (6). Steady state
analysis of DSPNs with concurrent deterministic transitions relies on the same approach [14].
Numerical computation of kernel elements of the GSSMC relies also on transient analysis of

subordinated Markov chains and subsequent summation of appropriately selected transient

probabilities [13]. This task is performed in submodblerive GSSMCAs in case of the
computation of the entries of the propability matrix of the EMC, a multithreaded execution
can be employed for determining the kernel elements using the sockets PMATRIX<1> to
PMATRIX<K>. Note that conversion factors are not required in the GSSMC approach. Thus,
the sockets CMATRIX<1> to CMATRIX<K> are not used.

After Derive GSSMChas completed, for transient analysis of DSPNs the number of
iterations corresponding to the mission time is performed on the system of Fredholm
equations (3) to (6) whereas for steady state analysis one large but very sparse linear system
solved using GMRES. This task is performed in the submdslolee Fredholm Equations

is



-10-

As indicated in Figure 1 only the front end and back end of the solution engine are tailored to
DSPNs.

3.3 The Graphical User Interface

Of course, the package DSPNexpress also provides a user-friendly graphical interface running
under X11. To illustrate the features of this graphical interface, consider the snapshot shown
in Figure 2. The first line displays the name of the packxgeNexpres200Q the affiliation

of the authorsUniversity of Dortmund, Computer Systems and Performance Evaluation
Group, and the year of releasEF999 A DSPN of a two-server, finite-capacity queue is
displayed. The model is namdtMPPqueuébecause customers arrive according to a Markov
modulated Poisson process. Recall that in DSPNs three types of transitions exist: immediate
transitions drawn as thin bars fire without delay, exponential transitions drawn as empty bars
fire after an exponentially distributed delay whereas deterministic transitions drawn as black
bars fire after a constant delay.

At any time, DSPNexpress provides on-line help messages displayed in the third line of the
interface. The command line and the object line are located on the left side of the interface.
The buttons are located in a vertical line between the on-line help line and the working area.

DEMNerpress 2000 Lbiversing of Daensend, Compeer Spsteiks and Pesfarmone Fraluation Crowup, 1909

WALT } ris = ag sl .

&l o e =1

Y

JULEE

Figure 2. The graphical user interface of DSPNexpress
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The working area constitutes the remaining big rectangle which contains the graphical
representation of the DSPMMPPqueue This DSPN is displayed with the optiotegs on

Thus, each place and each transition of this DSPN is labeled (8aurce
MMPoissonArriva) Decision, Accepted etc.). A detailed description of the features of the
graphical interface is given in Chapter 10 of [13].

4  Application Examples

To illustrate the practical applicability of the DSPNexpress software for transient and steady-
state analysis of DSPNs, we consider DSPNs of two queueing systems of high interest for
communication network performance analysis. For these two DSPNs we present curves for
CPU solution time and memory requirements versus model size. The experiments have been
performed on a Sun Sparc Enterprise station with 1 GByte main memory running the
operating system SunOS5.6. For the performance tests the CPU time has been measured by
the UNIX system callimes

Figure 3 shows a DSPN of an MMPP/D/2/K queue already displayed in the working area
of the screenshot of DSPNexpress in Figure 2. The K tokens residing irQalpaeityin the
initial marking represent the finite number of buffers of the queueing system. The token
residing the subnet comprising of the plaBessty modeandNormal modecontrols the mean
firing time of the exponential transitioklarkov modulated Poisson arrivallhat is, the
Markov modulated Poisson arrival stream is represented by defining the firing delay of the
corresponding exponential transition dependent on the location of the tokens in this subnet.
Tokens contained in the plac€sistomers in queuepresent customers waiting in the queue.
Tokens contained in the placBsrver 1 busandServer 2 busyepresent customers currently
being served. The number of tangible markings of this DSPN is give2(Ky 2). In 2
markings are only exponential transitions enabled whereas in 4 markings exactly one
deterministic transition is enabled. The number of tangible markings in which two
deterministic transitions are concurrently enabled is give@(Ky-1). The constant service
requirements are modeled by the deterministic transi@ngice landService 2vhich have
firing delay D = 1.0. We assume that the immediate transitag service at station and
Start service at station Rave both associated firing weights 1/2, such that arriving customers
to an empty system join each server with equal probability. Since a service completion at
either server leads to the same next tangible marking, the transition kernel of the GSSMC
underlying the DSPN of Figure 3 is symmetric. Thus, Equation (6) of the system of Fredholm
equations (3) to (6) need not be evaluated.

In all experiments, model parameters of the arrival process are set such that the effective
arrival rateA g4 = 0.9. For the transient analysis we set the initial distribution such that with
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Figure 3. DSPN of an MMPP/D/2/K queue

probability 1.0 no customers reside in the system at time t = 0 and that the arrival process is in
normal mode. The number of discretization steps employed in each dimension in the
composite Simpson quadrature rule for integral expressions in the iterative scheme is set to
M = 10. As indicated by Figure 7, this leads to a numerical accuracy of more tRamhE)
employment of higher-order quadrature rules like Gauss-Laguerre rules yield a numerical
accuracy of at least 28 which is close to optimal on a Sun Sparc under the Solaris operating
system.

Figure 4 plots the CPU time required for computing the transient solution at instant of time
T = 100 and for the steady-state solution, respectively, versus the model size. For both
transient and steady-state analysis, we observe a linear growth of CPU time. This is due to the
exploitation that almost all kernel elements are constants rather than functionals as evidently
illustrated in Table 1. The solver also exploits the separability of the transition kernel
P(c,c,&,&) in the iterative and direct solution of the Fredholm equations (3) to (5).
Furthermore, the solver employs a dynamic sparsing method by setting both constant and
functional kernel elements smaller than a given thresheld016 to zero. This results in an
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Figure 4. Transient and steady-state analysis of MMPP/D/2/K queue: CPU time
versus model size
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Figure 5. MMPP/D/2/K queue: memory requirements versus model size
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almost linear growth of the nonzero kernel elements for this class of DSPN models. Figure 5
plots the memory requirements for storing the nonzero elements of the transition kernel
versus model size and, thus, provides further evidence along this line. In a second experiment,
the model size is kept fixed to 10020 and the mission time (i.e., the number of iterations that
have to be performed by the iterative scheme) is varied from 10 to 100. As expected, Figure 6
shows a linear growth of CPU time for increasing mission time, since in each step of the
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Figure 6. Transient analysis of MMPP/D/2/K queue: CPU time versus mission time

80

100

iterative scheme a constant number of vector matrix multiplications is performed.

States of Nonzero | Constant | Functionals in Functionals in Functionals in Functionals in
GSSMC | entries entries |1 variable 2 variables |3 variables |4 variables
2004 2004997 99,30 % 0,20 % 0,49 % 26 % | 1,010"%
4008 8009997 99,65 % 0,10 % 0,25 % B8 % 2,510° %
6012 1801499y 99,77 % 0,07 % 0,17 % P08 % 1,1:10° %
8016 32019997 99,83 % 0,05 % 0,12 % 108 % 6,310° %
10020 50024997 99,86 % 0,04 % 0,10 % 100 % 4,010° %
12024 72029997 99,88 % 0,03 % 0,08 % 609 % 2,810° %
14028 98034997 99,90 % 0,03 % 0,07 % 5P % 2,010° %
16032 | 128039997 99,91 % 0,02 % 0,06 % -B0S % 1,7.10° %
18036 | 162044997 99,92 % 0,02 % 0,06 % B0 % 1,210° %
20040 | 200049997 99,93 % 0,02 % 0,05 % P08 % 1,010° %

Table 1. Classification of elements of the transition kernel of MMPP/D/2/K
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Table 1 shows the number of nonzero entries of the transition kernel of the GSSMC for
increasing model size; i.e., K = 1000 to 10000 and provides percentages for each of the five
different types of kernel elements. Note that this table shows the number of kernel entries
whose analytic expressions are nonzero. The employment of dynamic sparsing of kernel
entries in the practical computational scheme leads to a substantial reduction of nonzero
entries and, thus, of memory requirements. From Table 1 we observed that for this class of
DSPN models, i.e., DSPNs corresponding to queueing systems, kernel entries which are
functionals in 3 and 4 clock values occur very rarely and are independent of the model size.
Furthermore, functional entries in 1 and 2 clock values grow linearly with increasing model
size whereas constant entries grow quadratically. From Table 1, we observe that for this
example more than 99% of nonzero kernel entries are constant. For DSPNs corresponding to
gueueing systems like the one shown in Figure 3, the exploitation of constant entries in the
transition kernel is key for their highly efficient transient and steady-state analysis.

To justify the GSSMC approach implemented in DSPNexpress 2000 software, we compare
numerical accuracy and CPU solution time with the well-known Greedy approach of
approximating deterministic delays by an Erlang distribution. For this experiment, we
consider an MMPP/D/1/K with arrival rades = 0.9, service time D = 1.0, and K = 1000. As
measure of accuracy, the time-averaged mean queueing length is considered. Since this DSPN
does not contain concurrent deterministic transitions, this quantity can also be computed with
the EMC approach of DSPNexpress1.5 to determine the numerical accuracy.

200 T 3,5 —&— MMPP/Er/1/K
—&— MMPP/D/1/K 12,0
T -+ 40
150 -
+ 30
Number of
Number of 100 | ”g discretization
phases ’ steps
11,7 + 20
50 - 24 11,0 | 10
2,0
1,7 9.0
0 I I I I I I O

0 2 4 6 8 10 12 14

Accuracy in -log;,

Figure 7. Accuracy for analysis of MMPP/D/1/K queue versus MMPP/H1/K queue
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For the GSSMC approach, the number of discretization steps for integral expressions in (3)
to (5) was setto M =5, 10, 20, and 40. Erlang distributions with r = 10, 20,.., 200 phases and
mean value D = 1.0 were considered. Figure 7 in which the y-axis is drawn to scale with
respect to the required CPU solution time evidently shows the benefits of the GSSMC
approach for analysis of DSPNs; i.e., with the same amount of CPU solution time, the
GSSMC approach yields an accuracy of 8 orders higher than the Erlang approximation.

Figure 8 shows a DSPN of an/BI/M;/K;/2/L multiserver multiqueue system (MSMQ)
with exponential walking times as introduced in [2]. The queues have a Markovian arrival
stream with possibly different arrival ratesandA,, two deterministic servers, and capacities
Ky and K, respectively. As shown in Figure 8, the walking time between individual queueing
systems is assumed to be exponentially distributed with patesd ,, respectively. The
MSMQ is comprised of two queues that receive arrivals from the external world and of two
servers that cyclically attend the queues. Tokens residing in @apeityl andCapacity 2
represent free buffers of each system. The two tokens residing in Figure 8 irSptaee
available 1 represent the current position of the two servers. The exponential transitions
Walking 1 and Walking have infinite server firing policy in order to take into account the
concurrent walking of servers. After at most two customers received service at one queue,
customers of the next queue will be served; i.e., limited service discipline. To explicitly model
concurrent enabling of deterministic transitions, the DSPN submodels representing individual
gueues contain each two deterministic transitions; th&eigice 1,landService 2,1as well
asService 1,2andService 2,2The conflicting immediate transitions have both firing weights
1/2 so that each server is chosen with equal probability by queued customers.

Capacity 1 Capacity 2

Server 1,2Service 1,2

Server 1,1service 1,1 busy

busy
Queued ' Queued

customers
customers Server 2,1 _
busy Service 2,1

Server 2,2 .
busy Service 2,2

Walking 1
> >

Server walk

Server
available 1

Server walk 1

. available 2
Walking 2

Figure 8. DSPN of an M/D/M;/K;/2/L multiserver multiqueue system
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Figure 10. MSMQ system: memory requirements versus model size
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The DSPN shown in Figure 8 hak/K,K,+ K ,+ K ,+1 tangible markings. In
KK, +X 1+X ,+3 markings are only exponential transitions enabled whereas in
8K K, +4K 1+ &K , are exactly one deterministic transition enabled. The number of tangible
markings in which two deterministic transitions are concurrently enabled is given by
6K K, —2. In all experiments, we consider arrival rakgs= A, = 0.5, walking times of the
servers to the other queue with rages= 1, = 1.0, and deterministic service times D = 1.0.
Furthermore without loosing the representiveness of the experiments, we assumiég K

Figures 10 and 11 plot CPU solution time and memory requirements versus increasing
model size. As in case of the MMPP/D/2/K queue, both transient analysis for mission time
T = 100 and steady-state analysis is considered. We observe that the curves of Figure 9 and 11
have the same shape as corresponding curves of Figure 4 and 6. Again, we observe a linear
growth in CPU solution time and memory requirements for increasing model size. However,
for a particular model size, say 20000, the analysis of MSMQ requires about 6 times as much
CPU time as the MMPP/D/2/K. As shown in Figure 10, the memory requirements for the
analysis of MSMQ are twice as large as for the MMPP/D/2/K queue. On a first glance, this
observations looks surprising because for a given model size this DSPN contains considerably
less markings in which two deterministic transitions are concurrently enabled than the DSPN
of the MMPP/D/2/K queue. However, as illustrated by Table 2, the classification of the
entries of the transition kernel provide the explanation for the high CPU solution time.

Table 2 provides percentages for each of the five different types of kernel elements for the
MSMQ with exponential walking times. As before, this table shows the number of kernel
entries whose analytic expressions are nonzero. Table 2 indicates that for this class of DSPN
models, i.e., because of the exponential walking times, there is an almost even split between
functionals kernel entries and constant kernel entries. This is opposed to Table 1 and the

States of Nonzero | Constant | Functionals in Functionals in Functionals in Functionals in
GSSMC | entries entries |1 variable 2 variables |3 variables |4 variables
1841 30503% 27,83%  23,33% 18,64 % 16,35 %0 13,85
4036 977358 27,27% 22,86 % 18,75 % 16,82 %0 14,30 %6
5761 1493510 26,94 % 22,63 % 18,82 % 17,05 % 14,56 Do
7792 2276822 26,72% 22,58 % 18,86 % 17,12 % 14,72 %o
10129 3590882 26,61% 22,53 % 18,89 % 17,18 % 14,79 Mo
11857 4808125 26,54% 22,48 % 18,91 % 17,22 % 14,85 o
13721 6323849 26,48% 22,44 % 18,93 ¢ 17,25 % 14,90 Po
15721 8180660 26,42% 22,41 % 18,94 ¢ 17,28 % 14,94 Y%
17857 9629948 26,39% 22,39 % 18,95 ¢ 17,30 % 14,97 Y
20129 11993229 26,37 % 22,37 % 18,95 % 17,32 % 14,99 %

Table 2. Classification of elements of the transition kernel of MSMQ system
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single reason for the considerably higher CPU solution time shown in Figure 9. If the walking
time distribution is assumed to be deterministic, the classification of kernel entries will be
similar to Table 1. As a consequence, the CPU solution time will also be reduced
substantially.

Conclusions

This paper introduced DSPNexpress 2000, the new version of a widely distributed software
package for modeling with deterministic and stochastic Petri nets (DSPN). While the previous
version of DSPNexpress was known for its highly efficient numerical solver for steady-state
analysis of DSPNs without concurrent deterministic transitions [11], DSPNexpress 2000 also
provides a method for transient analysis of DSPNs [15]. Furthermore, both the stationary
analysis and the transient analysis is no longer restricted to the case that deterministic
transitions cannot be concurrently enabled [14]. To illustrate the applicability of the newly
implemented solvers of DSPNexpress 2000, we presented performance experiments for an
MMPP/D/2/K queue and a multi-server multi-queueing system. We presented curves plotting
the CPU time and memory requirements for transient and steady-state analysis versus model
size and mission time, respectively. These curves evidently show that DSPNexpress 2000 can
analyze quite complex DSPNs with two deterministic transitions concurrently active with
reasonable computing time and memory requirements.

In current work, we are integrating the exploitation of special structures and isomorphisms
presented for the analysis of DSPN without concurrent deterministic transitions in [12] in the
GSSMC approach. Following the lines of [12], we expect a further reduction of CPU solution
time by one order of magnitude.
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